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Charalambos Charalambides and the Lattice Path Conference

Charalambos was the organizer of the “5th International Conference on Lattice Path
Combinatorics and Discrete Distributions” (Athens, Greece, June 5-7, 2002).

~ | went there with my PhD advisor, Philippe Flajolet, and | gave a talk on "Why
Delannoy numbers?” (cf. previous talk by Christian!)

Anecdote: French people are considered to have a tradition of long lunches/dinners, but
| remember it was however unusual for us that the conference lunch was at ~ 3pm30! (&

Since, | also got in charge of this conference, and the next Lattice Path Conference
(Canada, summer 2026) will be dedicated to the memory of Professor Charalambides.
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History of the Lattice Path Conference

by its Srl Gopal Mohanty
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Charalambos Charalambides and Philippe Flajolet

To my eyes, Charalambos was a Greek “Philippe Flajolet”:
Both were enjoying food, cigarettes, beer, and also kindly serving as a mentor
for many students & older researchers in combinatorics and probability theory! (&

ENUMERATIVE x Analytic
COMBINATORICS . Combinatorics

Many common keywords: Catalan/Stirling/Eulerian numbers, partitions, arrangements,
permutations, generating functions, walks, Markov chains, distributions, orthogonal
polynomials, urns, g-analogues. ..
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An open problem of Christian Krattenthaler
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Number of x-axis contacts for m-watermelons, counted with weight g#conacts

~~ mean has completely different asymptotics for different values of q!
What could be the corresponding limit laws?
Is there a phase transition at g = 1? (q < 1 repulsive, g > 1 attractive?)
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An open problem of Christian Krattenthaler
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Number of x-axis contacts for m-watermelons, counted with weight ge°nacts

~~ mean has completely different asymptotics for different values of q!
What could be the corresponding limit laws?
Is there a phase transition at g = 1? (q < 1 repulsive, g > 1 attractive?)

No context-free grammar, too hard model to be solved?
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An open problem of Christian Krattenthaler
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Number of x-axis contacts for m-watermelons, counted with weight g#conacts

~~ mean has completely different asymptotics for different values of q!
What could be the corresponding limit laws?
Is there a phase transition at g = 1? (q < 1 repulsive, g > 1 attractive?)

No context-free grammar, too hard model to be solved? = Christian “I have a formula”:

C(n= IS @i+ I TIE2@n +2i) &2 (2n— ¢\ (¢ +2m—3)

This implies that the mean has a phase transition at g = 2!
In this talk, we analyse the universal phenomenon behind it,
and give the associated limit laws.
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Statistical mechanics and phase transitions

The founders of statistical mechanics:

James Clerk Maxwell  Josiah Willard Gibbs  Ludwig Boltzmann
(1831-1879) (1839-1903) (1844-1906) 1902

Partition function Z(1/T) = Tr(exp(—FH)) = 3, exp(_k’%)_
Z= Zustandssumme= state sum

Phase transition: in large structures, a continuous small variation of a parameter leads to
a macroscopic change.

~ singularity of the generating function!
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g-enumeration and Gibbs distributions

Definition (Gibbs distribution)

Let a family C of combinatorial objects and a statistic X': C — N be given.
For real g > 0, the Gibbs distribution of this statistic satisfies:

POG(@) =) = T >0
(@)
In terms of the probability generating function p(v) = E(v*("), we have E(v*"(?) = P09

p(q)

Ex. 1: @ = 1: uniform distribution.
Ex. 2: the Mallows distribution on permutations counting inversions [Mallows1957].
In general, we consider:

F(z.q)=>_ 2% =>"f(q)2" = > fx2"q".
cec n>0 n>0 k>0

Caveat: g is not symbolic, but a weight € R. Shares the spirit of the Boltzmann
distribution used in Boltzmann sampling method [Duchon, Flajolet, Louchard, Schaeffer 2004]:

f,kq 2"
F(z,q)’
where g and z are then tuned to minimize the number of rejection in the algorithm.

P(Xn(q) = k) = (thus Boltzmann # Gibbs)
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Gibbs distribution and phase transitions

q" = 254", where T is the temperature of the model.

T — 0 ~ frozen “solid” phase (often leading to a discrete distribution),
T — 400 ~ “gaseous” phase (often leading to a Gaussian distribution),
T = T, ~ “liquid” phase (where the wild things are: unexpected fancy distribution).

(c) Maurice Sendak, 1963
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Ubiquity of compositions schemes in combinatorics

Combinatorial structure = assemblage of basic building blocks

@ random walks @ permutations @ tilings
@ Podlya urns @ random mappings @ graphs
@ Galton—Watson processes @ set partitions @ maps
@ trees @ integer partitions o ...

A composition scheme for generating functions
> he'= G(H(2))M(z)
n>0

Let pg and py be the radii of convergence of G(z) and H(z), resp. Then, the composition
scheme is critical if H(pr) = pe and py > pH.

Examples:
@ Bicolored supertrees: F(z) = (ZZC(Z)) Toil e

@ Factorization of walks: W(2) = 7 M(2) Cpfusorics

NB: If not critical: [Bender 1973, Gourdon 1998, Hwang 1999, ...
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Combinatorial structures

here, sum of almost iid ~~ asymptotics distributions which are NON Gaussian.
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Analysis of F(z, u) = G(uH(z))M(z) (when uniform distribution model)

Number of #-components: Define the discrete random variable X, of the core size:

[2"UXF(z, u)
[2"]F(z,1)

Note that H(z) has typically the following singular expansion

P{X, = k} =

H(Z):TH+CH(17p£H)AH+....

= the asymptotic behaviour of P{X, = k} depends on the singular exponent \!
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Analysis of F(z, u) = G(uH(z))M(z) (when uniform distribution model)

Number of #-components: Define the discrete random variable X, of the core size:

[2"UXF(z, u)
[2"]F(z,1)

Note that H(z) has typically the following singular expansion

P{X, = k} =

H(Z):TH+CH(17p£H)AH+....

= the asymptotic behaviour of P{X, = k} depends on the singular exponent \!

Limit law of X, related to certain distributions:
@ Ay < 0: scheme not critical as H(z) diverges at z = py
(called supercritical, typically Gaussian)

@ 0 < Ay < 1: generalized Mittag-Leffler distribution

[Banderier, Kuba, Wallner, 2021]

(Aw = 1/2, M(z2) = 1: Rayleigh distribution, [Drmota, Soria 1997])
@ 1 < Ay < 2: related to stable laws of parameter Ay

(Aw = 3/2, M(z) = 1: map-Airy distribution

[Banderier, Flajolet, Schaeffer, Soria 2001])

@ )\y > 2: Gaussian
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Summary of the phase transitions for the uniform distribution

(AofA2023)
Composition scheme F(z,u) = G(uH(z)) - M(z),

for F/G/H/M analytic at the origin, with nonnegative coefficients, and singular exponents
)\F/Ag/AH/)\M, suchthat 0 < Ay < 1.

Limit law of the number of H-component is:

Singular AM > AGAH AM = AGAH A < AGAH
exponent (pure scheme) (confluent scheme) (degenerate scheme)
Limit law continuous linear combination discrete

(gen. ML) (ML + B) (Boltzmann B)
Example

k
Xn ~ CMHML Xp ~ LinComb(m\ ML, B)  P{Xn = k} ~ 225

See also [Stufler2022] for an approach using probability theory.
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Lemma (Nature and asymptotics of g-enumerated composition schemes)

The scheme F(z,q) = G(qH(z)) with singular exponents Az < 0 and0 < Ay < 1,
has a phase transition at q; := 26 = Hf’ pGH) >0:

TH

@ for0 < g < qc, the scheme is subcritical;
@ for q = qc, the scheme is critical;
@ for g > q., the scheme is supercritical.

Accordingly, if one imposes a Gibbs measure on the number of H-components, this
impacts the asymptotics of their g-enumeration f,(q) as follows:

G’ (g7 — N, —
T for 0<g<q
AG . _
h(@) ~ § 0a(~2) " g e for g =g,
A
H G o
oo AR ) A p e, for g > g,

where, in the last case, p is the unique solution of qH(p) = pg in the interval (0, py).

Proof.

Pringsheim’s theorem on G(qH(z)), composition of Puiseux expansions, analyticity in
some delta-domain, singularity analysis. O
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Main theorem: Gibbs models and phase transitions with respect to g

Theorem

For F(z,vq) = G(qvH(z)), with singular exponents Az < 0 and 0 < A, < 1,
the Gibbs distribution of X,(q) has (for n — +oo) a phase transition at qc = ’j—i :

Parameter q 0<g<qe q=qc q>Qqc
Regime Subcritical critical Supercritical
Singular exponent Z Z> 6 Z*a
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)

@ In the subcritical regime 0 < q < qc, the random variable X, — 1 converges to a
discrete distribution, a Boltzmann distribution Bg (q7h) with explicit probability
generating function given by:

var
P(X, — 1 = k) — [v¥] G,((;’TH)).
In particular, if G(z) = ﬁ the limit law of X, — 1 is a negative binomial

distribution NegBin(m + 1,1 — q7), where X ~ NegBin(r, p) is defined by
P(X =k)= (“"7""p'(1 — p)¥ fork > 0.
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Main theorem: Gibbs models and phase transitions with respect to g

Theorem

For F(z,vq) = G(qvH(z)), with singular exponents Ag < 0 and 0 < A, < 1,
the Gibbs distribution of X(q) has (for n — +oc0) a phase transition at q. = i—:“ :

Parameter q 0<g<q q=qc q> Qe
Regime Subcritical critical supercritical
Singular exponent ZM Z> M Z*a
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)

@ In the critical regime q = qc,

*CH Xn d
TH nAH — ML(a7B)7
a Mittag-Leffler distribution (with o :== Ay and 5 := —\g\y) of density
r 1 (o) —1)" a—
109)= ar((ng)ﬂ 2 "!(r(f)na)XnJrﬂ/ E

In particular, for \g = —1 and \; = %, we get the Rayleigh distribution R(v/2).
NB: R(c) has density ﬁefxz/ 2% for x > 0.
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Main theorem: Gibbs models and phase transitions with respect to g

For F(z,vq) = G(qvH(z)), with singular exponents Az < 0 and 0 < A, < 1,
the Gibbs distribution of X,(q) has (for n — +oo) a phase transition at qc = i—i :

Parameter q 0<g<q q9=qc q>qc
Regime Subcritical critical supercritical
Singular exponent Z* Z 6 Z*G
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)

@ In the supercritical regime q > qc,
(Xn — pn)/on 4N (0, 1), with linear mean and variance :

2 2 1
PG 2 PG PG /’GH (/1)
~ .[’]7 On N~ 7 —_— 7 7 ‘n,
o™ qpH (p) " <q2p2H(p)2 apH'(p) * q?pH (/))3)

where H(p) = pa/q.
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Main theorem: Gibbs models and phase transitions with respect to g

For F(z,vq) = G(qvH(z)), with singular exponents Ag < 0 and 0 < A, < 1,
the Gibbs distribution of X(q) has (for n — +o0c) a phase transition at q. = i—:“ :

Parameter q 0<g<q q=qc q> Qe
Regime Subcritical critical supercritical
Singular exponent Z*H Z> e Z>a
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)

o [ T T,
In particular, for n — oo, 14 qg’GqSZ,)H)’ for 0<q<gqe

A AA

_Pa |
WA for gq> qc.

Proof (sketch).

[2"F(z.qv) _ vG'(qvy)

Previous lemma — limp_,00 E(v¥(@) = limp_ 00 Wa = G
[BKW AofA2023] +moments = ML

Hwang’s quasi-power theorem = Gaussian. O
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A moment problem

For F(z,vq) = G(qvH(z))M(z), for q = qc,

Xn converges to the 3-parameter Mittag-Leffler
distribution, which is characterized by its
moments

Torsten Carleman Maurice Fréchet r (I‘ + g) r (ﬁ 4 7)

r
(1892-1949) (1878-1973) E(ML(OL,ﬁ,’Y) ) = r (ar I ,8 + ’7) r (ﬁ) .

Set m; := E[X"] and m.(n) := E[X7] .
[Fréchet, Shohat 1930]: if m,(n) — m; then X, 5 X
... if the moments determine X uniquely!

[Carleman 1923]: There is a unique distribution with such moments if :
1/2r

— for support [0, o) (Stielies moment problem): >>1/m,’*" = co
— for support (—oo, o0) (Hamburger moment problem): 3= 1/m}/?" = oo
— for support [0, 1] (Hausdorff moment problem): m, completely monotonic. O

Remark: works for distributions with moments of Gamma type [Janson 2010].
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Before the infinity, at a finite n. . .
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The distribution (with the histogram interpolated to a curve)
of returns to 0 in Motzkin excursions of length n = 100.
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Fixed-point-biased permutations avoiding a pattern of length three

@ Consider the number of fixed points in permutations of °
n avoiding one of the patterns 321. L
@ [Vella 2003, Elizalde 2004]: the generating function is °
F 2 * (]
z,u) = .
(z,u) 14+2(1—u)z++/1 -4z U

Theorem (Phase transition for fixed-point-biased permutations)

The limit Gibbs distribution of the fixed-point statistic in permutations avoiding any given
pattern p € {132,321,213} has a phase transition with critical value q. = 3:

Parameter q 0<g<3 g=3 g>3
Limit law of Xo(q) NegBin(2,1 — q/3) Rayleigh(~'2) N (0,1)

H(z) 1 1 1 1 2z

Flz.u) = z 1— uH(z) Tuz 1= uH(z)_E’ where  H(z) = 14+274++/1—4z

See also [Chelikavada, Panzo 2023] for a more probabilistic approach.
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Returns to zero in Dyck and Motzkin paths

Classical classes of paths:
@ Dyck: steps (1,1), (1,—1) @ Bridges start at (0, 0), end at (2n, 0)
@ Motzkin: steps (1,1), (1,—1), (1,0) @ Excursions = bridges > 0

Let X»(q) be the number of returns to zero in Dyck/Motzkin bridges/excursions.

Theorem (g-enumerations: limit laws for returns to zero)

Parameter q Limit law

2 for Dyck excursions,
0<g<qge Xo—1% NegBin(2,1— qry,) G — 1 for Dyck bridges,
qg=qc cst% 2, Rayleigh(v/2) ‘ 3 for Motzk/:n ex'cursions,
q> g X(nf—i\%n 2 N (0, 1) 1 for Motzkin bridges.
Dyck: D(z,u) = 1 and Bp(z,u) = 1
yek. T — z2uD(2) PA& T = 1 2222uD(z)
Motzkin:  M(z,u) = ! and By(z,u) = !

1—zu(1+ zM(2)) 1 —zu(1+2zM(z))
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Boundary contacts for quarter-plane walks

@ Walks in the quarter-plane starting and ending at the origin
@ Hadamard models are enumerated by a Hadamard product of generating functions

A(z) © B(z) =" anby2",

n>0

where A(z) = 37, anz" and B(z) = 37, -, bnz".

Model Steps  Generating function Q(z, u1, u2)  Sequence Qj

Diagonal X D(z,u1) © D(z, up) Cn-Cy
Diabolo X D(z,u1) © M(z, up) Cn-M,
King % M(z,ur) © M(z, up) My - M

Theorem (Boundary interactions for some quarter-plane walks)

The number of axis contacts follows the NegBin/Rayleigh/Gaussian transitions phase of
the previous slide.

. . [WD(z.qu)© D(z) _ [2"u"|D(z. qu)
Proof: FX(@ =k = "Gapz.q)o bz) ~ 21D(z q)
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Friendly two-watermelons without wall: contacts and returns

@ Friendly two-watermelons are pairs of directed walkers with steps (1,—1) and (1,1)
that may share edges but not cross [Krattenthaler Guttmann Viennot 2000, Roitner 2020]

@ A contactin a two-watermelon is a point (not counting the starting point) where both

paths occupy the same lattice point.

Theorem (Phase transition for contacts in friendly two-watermelons)

Parameter q 0<qg<3 a=13% q>3
Limit law of Xn(q) NegBin(2,1— 2q)  Rayleigh(v2) N(0,1)
1 1-2z—-+v1-4z
F = Wz)= ———F——.
(z,0) 1—u(z2W(z) +22)’ (2) 272

g-enumerations and phase transitions in Gibbs models
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Number of wall contacts in watermelons

@ Vicious m-watermelon of length 2n consists of m walkers that do not touch each
other moving from (0,2 — 2) to (2n,2i — 2), 1 < i < musing steps (1,1) or (1,—1)

@ It has a wallif the x-axis acts as a barrier for the lowest walker

@ [Krattenthaler Guttmann Viennot 2000, Krattenthaler 2006, Feierl 2009-2014]

T

3-watermelon with a wall of length 24 with 7 x-axis contacts

Theorem (Phase transition for wall contacts)

Parameter q 0<g<2 qg=2 gqg>2
Limit law of X»(q) NegBin(2m,1— 1) x(2m) N(0,1)

Proof: jeu de taquin + determinant ~~ Krattenthaler’s huge formula, which we simplify

Pz 1
VI—4z (1-qzC(2))*"

F(Z7q) =

Open problem: bijective proof?
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Returns to zero in coloured walks

@ An m-coloured bridge is an m-tuple (B, ..., Bn) of (possibly empty) bridges B;.
@ Linked to integer multicompositions [Andrews 2007, Hopkins Ouvry 2021]

WSl

First bridge Second (empty) bridge Third brideg
of colour blue of dolout purple of lcolour gr een

A 3-coloured walk with 7 returns to zero.

Theorem (Phase transitions for returns to zero)

Parameter q 0<g<i g=1 qg>1
Limit law of X,(q) NegBin(m,1 —q) x(m) N(0,1)

(1): half-normal distribution

(2): Rayleigh distribution W(z) 1

@ x
@ x
F(z,q) =

x(3): Maxwell distribution
® x(m) = 5 ML(3,7,3)
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Conclusion

v unified the analysis of the Gibbs model, under the umbrella of composition schemes

v explained the universality hidden behind some phase transitions up to now
sporadically observed in the literature

v established universal limit laws (Boltzmann, Mittag-Leffler)

B
/ Mittag-Leffler: E(ML(a, 8,)") = miz()f(*;’)

v variety of examples

Parameter q 0<g<qe qg=0qc qa> Qe
Regime subcritical critical supercritical
Singular exponent ZM ZX6HH Z%e
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)
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Conclusion

v unified the analysis of the Gibbs model, under the umbrella of composition schemes

v explained the universality hidden behind some phase transitions up to now
sporadically observed in the literature

v established universal limit laws (Boltzmann, Mittag-Leffler)

B
/ Mittag-Leffler: E(ML(a, 8,)") = miz()f(*;’)

v variety of examples

Parameter q 0<g<qe qg=0qc qa> Qe
Regime subcritical critical supercritical
Singular exponent ZM ZX6HH Z%e
Limit law discrete continuous continuous

(Boltzmann)  (Mittag-Leffler)  (Gaussian)

Thanks(Thanks)! &
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