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Charalambos Charalambides and the Lattice Path Conference
Charalambos was the organizer of the “5th International Conference on Lattice Path
Combinatorics and Discrete Distributions” (Athens, Greece, June 5-7, 2002).
⇝ I went there with my PhD advisor, Philippe Flajolet, and I gave a talk on ”Why
Delannoy numbers?” (cf. previous talk by Christian!)

Anecdote: French people are considered to have a tradition of long lunches/dinners, but
I remember it was however unusual for us that the conference lunch was at ∼ 3pm30!

Since, I also got in charge of this conference, and the next Lattice Path Conference
(Canada, summer 2026) will be dedicated to the memory of Professor Charalambides.
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Charalambos Charalambides and Philippe Flajolet
To my eyes, Charalambos was a Greek “Philippe Flajolet”:
Both were enjoying food, cigarettes, beer, and also kindly serving as a mentor
for many students & older researchers in combinatorics and probability theory!

Charalambos Charalambides (1945-2024) Philippe Flajolet (1948-2011)

Many common keywords: Catalan/Stirling/Eulerian numbers, partitions, arrangements,
permutations, generating functions, walks, Markov chains, distributions, orthogonal
polynomials, urns, q-analogues. . .
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An open problem of Christian Krattenthaler

Number of x-axis contacts for m-watermelons, counted with weight q#contacts

⇝ mean has completely different asymptotics for different values of q!
What could be the corresponding limit laws?
Is there a phase transition at q = 1? (q < 1 repulsive, q > 1 attractive?)

No context-free grammar, too hard model to be solved? ⇒ Christian “I have a formula”:

fn(q) =
(n − 1)!

∏m−1
i=0 (2i + 1)!

∏m−2
i=0 (2n + 2i)!∏2m−2

i=0 (n + i)!

n+1∑
ℓ=2

(
2n − ℓ

n − 1

)(
ℓ+ 2m − 3

ℓ− 2

)
qℓ.

This implies that the mean has a phase transition at q = 2!
In this talk, we analyse the universal phenomenon behind it,
and give the associated limit laws.
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Statistical mechanics and phase transitions

The founders of statistical mechanics:

James Clerk Maxwell Josiah Willard Gibbs Ludwig Boltzmann
(1831–1879) (1839–1903) (1844–1906) 1902

Partition function Z (1/T ) = Tr(exp(− 1
T H)) =

∑
j exp(−

Ej
kBT ).

Z= Zustandssumme= state sum

Phase transition: in large structures, a continuous small variation of a parameter leads to
a macroscopic change.

≈ singularity of the generating function!
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q-enumeration and Gibbs distributions

Definition (Gibbs distribution)

Let a family C of combinatorial objects and a statistic X : C → N be given.
For real q > 0, the Gibbs distribution of this statistic satisfies:

P(Xn(q) = k) =
fn,k qk

fn(q)
, k ≥ 0.

In terms of the probability generating function p(v) = E(vXn(1)), we have E(vXn(q)) = p(vq)
p(q) .

Ex. 1: q = 1: uniform distribution.
Ex. 2: the Mallows distribution on permutations counting inversions [Mallows1957].
In general, we consider:

F (z, q) =
∑
C∈C

z|C|qX (C) =
∑
n≥0

fn(q)zn =
∑
n≥0

∑
k≥0

fn,k znqk .

Caveat: q is not symbolic, but a weight ∈ R+. Shares the spirit of the Boltzmann
distribution used in Boltzmann sampling method [Duchon, Flajolet, Louchard, Schaeffer 2004]:

P(Xn(q) = k) =
fn,k qk zn

F (z, q)
, (thus Boltzmann ̸= Gibbs)

where q and z are then tuned to minimize the number of rejection in the algorithm.
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Gibbs distribution and phase transitions

qk = exp(−k/T )
Z (1/T )

, where T is the temperature of the model.
T → 0⇝ frozen “solid” phase (often leading to a discrete distribution),
T → +∞⇝ “gaseous” phase (often leading to a Gaussian distribution),
T = Tc ⇝ “liquid” phase (where the wild things are: unexpected fancy distribution).

(c) Maurice Sendak, 1963
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Ubiquity of compositions schemes in combinatorics

Combinatorial structure = assemblage of basic building blocks
random walks

Pólya urns

Galton–Watson processes

trees

permutations

random mappings

set partitions

integer partitions

tilings

graphs

maps

. . .

A composition scheme for generating functions∑
n≥0

fnzn = F (z) = G
(
H(z)

)
M(z)

Let ρG and ρH be the radii of convergence of G(z) and H(z), resp. Then, the composition
scheme is critical if H(ρH) = ρG and ρM ≥ ρH .

Examples:

Bicolored supertrees: F (z) = C(2zC(z))

Factorization of walks: W (z) = 1
1−H(z)M(z)

NB: If not critical: [Bender 1973, Gourdon 1998, Hwang 1999, ...]
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Combinatorial structures G(H(z))× M(z)
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here, sum of almost iid⇝ asymptotics distributions which are NON Gaussian.
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Analysis of F (z,u) = G(uH(z))M(z) (when uniform distribution model)

Number of H-components: Define the discrete random variable Xn of the core size:

P{Xn = k} =
[znuk ]F (z, u)
[zn]F (z, 1)

Note that H(z) has typically the following singular expansion

H(z) = τH + cH

(
1 − z

ρH

)λH
+ . . . .

⇒ the asymptotic behaviour of P{Xn = k} depends on the singular exponent λH !

Limit law of Xn related to certain distributions:

λH < 0: scheme not critical as H(z) diverges at z = ρH

(called supercritical, typically Gaussian)

0 < λH < 1: generalized Mittag-Leffler distribution
[Banderier, Kuba, Wallner, 2021]
(λH = 1/2, M(z) = 1: Rayleigh distribution, [Drmota, Soria 1997])

1 < λH < 2: related to stable laws of parameter λH

(λH = 3/2, M(z) = 1: map-Airy distribution
[Banderier, Flajolet, Schaeffer, Soria 2001])

λH > 2: Gaussian
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Summary of the phase transitions for the uniform distribution
(AofA2023)

Composition scheme F (z, u) = G
(
uH(z)

)
· M(z),

for F /G/H/M analytic at the origin, with nonnegative coefficients, and singular exponents
λF/λG/λH/λM , such that 0 < λH < 1.

Limit law of the number of H-component is:

Singular λM > λGλH λM = λGλH λM < λGλH
exponent (pure scheme) (confluent scheme) (degenerate scheme)

Limit law continuous linear combination discrete
(gen. ML) (ML+ B) (Boltzmann B)

Example

Xn ∼ CnλH ML Xn ∼ LinComb(nλH ML,B) P{Xn = k} ∼ gkρ
k
G

G(ρG)

See also [Stufler2022] for an approach using probability theory.
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Lemma (Nature and asymptotics of q-enumerated composition schemes)

The scheme F (z, q) = G
(
qH(z)

)
with singular exponents λG < 0 and 0 < λH < 1,

has a phase transition at qc :=
ρG
τH

=
ρG

H(ρH )
> 0:

for 0 < q < qc , the scheme is subcritical;

for q = qc , the scheme is critical;

for q > qc , the scheme is supercritical.

Accordingly, if one imposes a Gibbs measure on the number of H-components, this
impacts the asymptotics of their q-enumeration fn(q) as follows:

fn(q) ∼


cH qG′(qτH )

Γ(−λH )
ρ−n

H n−λH−1, for 0 < q < qc ,

cG

(
− cH

τH

)λG 1
Γ(−λHλG)

ρ−n
H n−λHλG−1, for q = qc ,

cG

(
qρH′(ρ)

ρG

)λG 1
Γ(−λG)

ρ−nn−λG−1, for q > qc ,

where, in the last case, ρ is the unique solution of qH(ρ) = ρG in the interval (0, ρH).

Proof.

Pringsheim’s theorem on G(qH(z)), composition of Puiseux expansions, analyticity in
some delta-domain, singularity analysis.
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Main theorem: Gibbs models and phase transitions with respect to q

Theorem

For F (z, vq) = G
(
qvH(z)

)
, with singular exponents λG < 0 and 0 < λH < 1,

the Gibbs distribution of Xn(q) has (for n → +∞) a phase transition at qc =
ρG
τH

:

Parameter q 0 < q < qc q = qc q > qc

Regime subcritical critical supercritical
Singular exponent ZλH ZλGλH ZλG

Limit law discrete continuous continuous
(Boltzmann) (Mittag-Leffler) (Gaussian)

In the subcritical regime 0 < q < qc , the random variable Xn − 1 converges to a
discrete distribution, a Boltzmann distribution BG′(qτh) with explicit probability
generating function given by:

P(Xn − 1 = k) → [v k ]
G′(vqτH)

G′(qτH)
.

In particular, if G(z) = 1
(1−z)m , the limit law of Xn − 1 is a negative binomial

distribution NegBin(m + 1, 1 − qτH), where X ∼ NegBin(r , p) is defined by
P(X = k) =

(k+r−1
k

)
pr (1 − p)k for k ≥ 0.
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In the critical regime q = qc ,

−cH

τH

Xn

nλH

d−→ ML(α, β),

a Mittag-Leffler distribution (with α := λH and β := −λGλH ) of density
f (x) = Γ(β+1)

αΓ( β
α
+1)

∑∞
n=1

(−1)n

n!Γ(−nα)
xn+β/α−1.

In particular, for λG = −1 and λH = 1
2 , we get the Rayleigh distribution R(

√
2).

NB: R(σ) has density x
σ2 e−x2/(2σ2) for x ≥ 0.
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In the supercritical regime q > qc ,
(Xn − µn)/σn

d−→ N (0, 1), with linear mean and variance :

µn ∼ ρG

qρH ′(ρ)
· n, σ2

n ∼
( ρ2

G

q2ρ2H ′(ρ)2 − ρG

qρH ′(ρ)
+

ρ2
GH ′′(ρ)

q2ρH ′(ρ)3

)
· n,

where H(ρ) = ρG/q.
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In particular, for n → ∞,

E(Xn) ∼


1 +

qτH G′′(qτH )

G′(qτH )
, for 0 < q < qc ,

λGτHΓ(−λGλH )

cHΓ((1−λG)λH )
· nλH , for q = qc ,

ρG
qρH′(ρ) · n, for q > qc .

Proof (sketch).

Previous lemma → limn→∞ E(vXn(q)) = limn→∞
[zn ]F (z,qv)

fn(q)
=

vG′(qvτH )

G′(qτH )
.

[BKW AofA2023] +moments ⇒ ML
Hwang’s quasi-power theorem ⇒ Gaussian.
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A moment problem

Torsten Carleman

(1892-1949)

Maurice Fréchet

(1878-1973)

Theorem

For F (z, vq) = G(qvH(z))M(z), for q = qc ,
Xn converges to the 3-parameter Mittag-Leffler
distribution, which is characterized by its
moments

E(ML(α, β, γ)r ) =
Γ
(
r + β

α

)
Γ (β + γ)

Γ (αr + β + γ) Γ
(
β
α

) .
Proof.

Set mr := E[X r ] and mr (n) := E[X r
n ] .

[Fréchet, Shohat 1930]: if mr (n) → mr then Xn
d→ X

... if the moments determine X uniquely!

[Carleman 1923]: There is a unique distribution with such moments if :
– for support [0,∞) (Stieljes moment problem):

∑
1/m1/2r

r = ∞
– for support (−∞,∞) (Hamburger moment problem):

∑
1/m1/2r

2r = ∞
– for support [0, 1] (Hausdorff moment problem): mr completely monotonic.

Remark: works for distributions with moments of Gamma type [Janson 2010].
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Before the infinity, at a finite n. . .

q = 1 qc = 1.5 q = 3

The distribution (with the histogram interpolated to a curve)
of returns to 0 in Motzkin excursions of length n = 100.
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Fixed-point-biased permutations avoiding a pattern of length three

Consider the number of fixed points in permutations of
n avoiding one of the patterns 321.

[Vella 2003, Elizalde 2004]: the generating function is

F (z, u) =
2

1 + 2(1 − u)z +
√

1 − 4z
.

Theorem (Phase transition for fixed-point-biased permutations)

The limit Gibbs distribution of the fixed-point statistic in permutations avoiding any given
pattern p ∈ {132, 321, 213} has a phase transition with critical value qc = 3:

Parameter q 0 < q < 3 q = 3 q > 3

Limit law of Xn(q) NegBin(2, 1 − q/3) Rayleigh(
√

2) N (0, 1)

F (z, u) =
H(z)

z
· 1
1 − uH(z)

=
1

uz
· 1
1 − uH(z)

− 1
uz

, where H(z) =
2z

1 + 2z +
√

1 − 4z
.

See also [Chelikavada, Panzo 2023] for a more probabilistic approach.

Cyril Banderier, Markus Kuba, Stephan Wagner, Michael Wallner q-enumerations and phase transitions in Gibbs models 16 / 22



Returns to zero in Dyck and Motzkin paths

Classical classes of paths:

Dyck: steps (1, 1), (1,−1)

Motzkin: steps (1, 1), (1,−1), (1, 0)
Bridges start at (0, 0), end at (2n, 0)

Excursions = bridges ≥ 0

Let Xn(q) be the number of returns to zero in Dyck/Motzkin bridges/excursions.

Theorem (q-enumerations: limit laws for returns to zero)

Parameter q Limit law

0 < q < qc Xn − 1 d−→ NegBin(2, 1 − qτH)

q = qc cst Xn√
n

d−→ Rayleigh(
√

2)

q > qc
Xn−µ·n
σ·

√
n

d−→ N (0, 1)

qc =


2 for Dyck excursions,
1 for Dyck bridges,
3
2 for Motzkin excursions,
1 for Motzkin bridges.

Dyck: D(z, u) =
1

1 − z2uD(z)
and BD(z, u) =

1
1 − 2z2uD(z)

Motzkin: M(z, u) =
1

1 − zu
(
1 + zM(z)

) and BM(z, u) =
1

1 − zu
(
1 + 2zM(z)

)
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Boundary contacts for quarter-plane walks
Walks in the quarter-plane starting and ending at the origin
Hadamard models are enumerated by a Hadamard product of generating functions

A(z)⊙ B(z) :=
∑
n≥0

anbnzn,

where A(z) =
∑

n≥0 anzn and B(z) =
∑

n≥0 bnzn.

Model Steps Generating function Q(z, u1, u2) Sequence Q2n

Diagonal D(z, u1)⊙ D(z, u2) Cn · Cn

Diabolo D(z, u1)⊙ M(z, u2) Cn · Mn

King M(z, u1)⊙ M(z, u2) Mn · Mn

Theorem (Boundary interactions for some quarter-plane walks)

The number of axis contacts follows the NegBin/Rayleigh/Gaussian transitions phase of
the previous slide.

Proof: P(Xn(q) = k) =
[znuk ]D(z, qu)⊙ D(z)
[zn]D(z, q)⊙ D(z)

=
[znuk ]D(z, qu)
[zn]D(z, q)
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Friendly two-watermelons without wall: contacts and returns

Friendly two-watermelons are pairs of directed walkers with steps (1,−1) and (1, 1)
that may share edges but not cross [Krattenthaler Guttmann Viennot 2000, Roitner 2020]

A contact in a two-watermelon is a point (not counting the starting point) where both
paths occupy the same lattice point.

Theorem (Phase transition for contacts in friendly two-watermelons)

Parameter q 0 < q < 4
3 q = 4

3 q > 4
3

Limit law of Xn(q) NegBin(2, 1 − 3
4 q) Rayleigh(

√
2) N (0, 1)

F (z, u) =
1

1 − u
(
z2W (z) + 2z

) , W (z) =
1 − 2z −

√
1 − 4z

2z2 .
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Number of wall contacts in watermelons
Vicious m-watermelon of length 2n consists of m walkers that do not touch each
other moving from (0, 2i − 2) to (2n, 2i − 2), 1 ≤ i ≤ m using steps (1, 1) or (1,−1)
It has a wall if the x-axis acts as a barrier for the lowest walker
[Krattenthaler Guttmann Viennot 2000, Krattenthaler 2006, Feierl 2009-2014]

3-watermelon with a wall of length 24 with 7 x-axis contacts

Theorem (Phase transition for wall contacts)

Parameter q 0 < q < 2 q = 2 q > 2

Limit law of Xn(q) NegBin(2m, 1 − q
2 ) χ(2m) N (0, 1)

Proof: jeu de taquin + determinant⇝ Krattenthaler’s huge formula, which we simplify

F (z, q) =
q2z√
1 − 4z

· 1(
1 − qzC(z)

)2m

Open problem: bijective proof?
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Returns to zero in coloured walks

An m-coloured bridge is an m-tuple (B1, . . . ,Bm) of (possibly empty) bridges Bi .
Linked to integer multicompositions [Andrews 2007, Hopkins Ouvry 2021]

First bridge Second (empty) bridge
of colour blue of colour purple

Third bridge
of colour green

A 3-coloured walk with 7 returns to zero.

Theorem (Phase transitions for returns to zero)

Parameter q 0 < q < 1 q = 1 q > 1

Limit law of Xn(q) NegBin(m, 1 − q) χ(m) N (0, 1)

χ(1): half-normal distribution

χ(2): Rayleigh distribution

χ(3): Maxwell distribution

χ(m) = 1√
2
ML( 1

2 ,
m
2 ,

1
2 )

F (z, q) =
W (z)
B(z)

1
(1 − qA(z))m
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Conclusion
✓ unified the analysis of the Gibbs model, under the umbrella of composition schemes
✓ explained the universality hidden behind some phase transitions up to now

sporadically observed in the literature
✓ established universal limit laws (Boltzmann, Mittag-Leffler)

✓ Mittag-Leffler: E(ML(α, β, γ)r ) =
Γ(r+ β

α )Γ(β+γ)

Γ(αr+β+γ)Γ( β
α )

✓ variety of examples

Parameter q 0 < q < qc q = qc q > qc

Regime subcritical critical supercritical
Singular exponent ZλH ZλGλH ZλG

Limit law discrete continuous continuous
(Boltzmann) (Mittag-Leffler) (Gaussian)

Thanks(Thanks)!

Cyril Banderier, Markus Kuba, Stephan Wagner, Michael Wallner q-enumerations and phase transitions in Gibbs models 22 / 22



Conclusion
✓ unified the analysis of the Gibbs model, under the umbrella of composition schemes
✓ explained the universality hidden behind some phase transitions up to now

sporadically observed in the literature
✓ established universal limit laws (Boltzmann, Mittag-Leffler)

✓ Mittag-Leffler: E(ML(α, β, γ)r ) =
Γ(r+ β

α )Γ(β+γ)

Γ(αr+β+γ)Γ( β
α )

✓ variety of examples

Parameter q 0 < q < qc q = qc q > qc

Regime subcritical critical supercritical
Singular exponent ZλH ZλGλH ZλG

Limit law discrete continuous continuous
(Boltzmann) (Mittag-Leffler) (Gaussian)

Thanks(Thanks)!

Cyril Banderier, Markus Kuba, Stephan Wagner, Michael Wallner q-enumerations and phase transitions in Gibbs models 22 / 22


