Limit theorems for the q-Pólya urn

Dimitris Cheliotis

Department of Mathematics National and Kapodistrian University of Athens

Conference in memory of Professor Charalambos Charalambides October 5, 2024 Based on the work:

Limit behavior of the q-Polya urn. With D. Kouloumpou. The Ramanujan Journal 60 (1) (2023), 69-93.

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Limit behavior

- r: initial number of white balls
- s : initial number of black balls
- A_n : number of white balls after n steps
- B_n : number of black balls after n steps

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Limit behavior

- r: initial number of white balls
- s : initial number of black balls
- A_n : number of white balls after n steps
- B_n : number of black balls after n steps

$$\frac{A_n}{A_n+B_n} \to L \sim \textit{Beta}(r,s)$$

for $n \to \infty$ with probability 1.

q-Pólya urn

Let $q \in (0,1)$ For $x \in \mathbb{R}$ $[x]_q := \frac{q^x - 1}{q - 1}$ the *q*-analog of *x*. $[x]_q \to x$ for $q \to 1$.

q-Pólya urn

Let $q \in (0,1)$ For $x \in \mathbb{R}$

$$[x]_q := \frac{q^x - 1}{q - 1}$$

the q-analog of x. $[x]_q \to x$ for $q \to 1$.

Urn with r white and s black balls.

• Pick at random a color with probabilities

$$egin{aligned} \mathbf{P}_q(extsf{white}) &= rac{[r]_q}{[r+s]_q} = rac{1-q^r}{1-q^{r+s}} \ \mathbf{P}_q(extsf{black}) &= q^r rac{[s]_q}{[r+s]_q} \end{aligned}$$

• Add a ball of this color in the urn.

Experiment realizing the probabilities:

Place the balls in order, first the white then the black.

- Start from left, visit each ball and pick it with probability 1 q.
- If no ball is picked out of the r + s, start again from left.
- When a ball is picked, the step is finished.

Experiment realizing the probabilities:

Place the balls in order, first the white then the black.

- Start from left, visit each ball and pick it with probability 1-q.
- If no ball is picked out of the r + s, start again from left.
- When a ball is picked, the step is finished.

$$\mathbf{P}(\mathsf{white}) = \overbrace{(1-q^r)}^{\mathsf{first round}} + \overbrace{q^{r+s}(1-q^r)}^{\mathsf{second round}} + q^{2(r+s)}(1-q^r) + \cdots$$
$$= (1-q^r) \sum_{j=0}^{\infty} (q^{r+s})^j = \frac{1-q^r}{1-q^{r+s}}$$

Urn giving priority to white balls

Theorem (D. C., D. Kouloumpou, 2023) Let $q \in (0, 1)$

 $X_n = \#$ extractions of black balls in first *n* extractions

Assume $r \ge 1$. With probability 1, X_n is finally constant.

 $X_{\infty} := \lim_{n \to \infty} X_n$ has probability mass function

$$f(k) = q^{rk} \begin{bmatrix} s+k-1\\k \end{bmatrix}_q \prod_{j=0}^{s-1} (1-q^r q^j)$$

for each $k \in \mathbb{N}$. Negative *q*-binomial of the second kind with parameters *s*, q^r , *q*.

Theorem (D. C., D. Kouloumpou, 2023) Let $q \in (0, 1)$

 $X_n = \#$ extractions of black balls in first *n* extractions

Assume $r \ge 1$. With probability 1, X_n is finally constant.

 $X_{\infty} := \lim_{n \to \infty} X_n$ has probability mass function

$$f(k) = q^{rk} \begin{bmatrix} s+k-1\\k \end{bmatrix}_q \prod_{j=0}^{s-1} (1-q^r q^j)$$

for each $k \in \mathbb{N}$. Negative *q*-binomial of the second kind with parameters *s*, q^r , *q*.

$$\begin{bmatrix} x \\ k \end{bmatrix}_q := \frac{[x]_q [x-1]_q \cdots [x-k+1]_q}{[1]_q [2]_q \cdots [k]_q}$$

Simple argument for $\mathbf{P}(X < \infty) = 1$

 $B_n :=$ number of white balls after *n* extractions

 $B_n \geq Y_1 + Y_2 + \cdots + Y_n$

 Y_i : i.i.d. Bernoulli(1 - q)

 $E_n := \{ black in the$ *n* $-th extraction \}$

Simple argument for $P(X < \infty) = 1$

 $B_n :=$ number of white balls after *n* extractions

$$B_n \geq Y_1 + Y_2 + \dots + Y_n$$

 Y_i : i.i.d. Bernoulli $(1 - q)$
 $E_n := \{ ext{black in the } n ext{-th extraction} \}$

$$\begin{split} \mathbf{P}(E_{n+1}) &= \mathbf{E}\{\mathbf{P}(E_{n+1}|B_n)\} \leq \overbrace{\mathbf{E}(q^{B_n})}^{\text{no white in first round}} \leq (\mathbf{E}\{q^{Y_1})\}^n\\ \sum_{n=1}^{\infty} \mathbf{P}(E_n) < \infty \end{split}$$

.

Apply 1st Borel-Cantelli.

The proof The pmf of X_n is known

$$\mathbf{P}(X_n = k) = q^{rk} \frac{\binom{s+k-1}{k}_q \binom{r+n-k-1}{n-k}_q}{\binom{r+s+n-1}{n}_q}$$

 $\lim_{n\to\infty} \mathbf{P}(X_n=k)$ can be calculated using

$$\lim_{n\to\infty} \binom{m+n}{n}_q = \frac{1}{(1-q)(1-q^2)\cdots(1-q^m)}$$

 X_{∞} =total number of black balls added

$$\mathbf{E}(X_{\infty}) = \sum_{j=r}^{r+s-1} \frac{q^{j}}{1-q^{j}} \sim \frac{q^{r}}{1-q^{r}} \frac{1-q^{s}}{1-q}$$

 $T_f :=$ largest draw that gives black ball

 $\mathbf{P}(T_f \ge n) \sim q^n$

Next: Functional limit theorems

The basic paradigm

$$(X_i)_{i\geq 1}$$
: i.i.d with $\mathbf{E}(X_1) = 0$, $Var(X_1) = 1$.
 $S_k := X_1 + \cdots + X_k$

Strong law of large numbers: With probability 1, as $n \to \infty$,

$$\frac{S_n}{n} \to 0$$

Central limit theorem:

$$\sqrt{n}\frac{S_n}{n} = \frac{S_n}{\sqrt{n}} \Rightarrow Z \sim N(0,1)$$

Donsker's theorem. Functional CLT :

$$\left(\frac{S_{nt}}{\sqrt{n}}\right)_{t\geq 0} \Rightarrow (W_t)_{t\geq 0} \leftarrow \text{Brownian motion}$$

A functional CLT for the q-Pólya urn

 $c\in(0,1),$ a>0 fixed. For each $n\in\mathbb{N}^+$ a different q-urn

$$q_n := c^{1/n} \in (0,1)$$
 $\rightarrow 1 \text{ as } m \rightarrow \infty$
 $A^{(n)}(0) = [an]$ initial number of white balls
 $B^{(n)}(0) = w_0$ initial number of black balls

$$A^{(n)}(k) := \#$$
white balls after k steps
 $B^{(n)}(k) := \#$ black balls after k steps

A functional CLT for the q-Pólya urn

 $c\in(0,1),$ a>0 fixed. For each $n\in\mathbb{N}^+$ a different q-urn

$$q_n := c^{1/n} \in (0,1) o 1 ext{ as } m o \infty$$

 $A^{(n)}(0) = [an] ext{ initial number of white balls}$
 $B^{(n)}(0) = w_0 ext{ initial number of black balls}$

$$A^{(n)}(k) := \#$$
white balls after k steps
 $B^{(n)}(k) := \#$ black balls after k steps

Theorem (D. C. , D. Kouloumpou, 2023) As $n \rightarrow \infty$

$$\{B^{(n)}([nt]) - B^{(n)}(0)\}_{t \ge 0} \Rightarrow \{Z(t)\}_{t \ge 0}$$

 \boldsymbol{Z} a pure birth process inhomogeneous in time

Rates

$$\lambda_{t,j} = \frac{w_0+j}{(1/c)^{a+t}-1}\log(1/c)$$

[Meaning of rate

$$\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j}h + o(h)]$$
 as $h o 0^+]$

Rates

$$\lambda_{t,j} = \frac{w_0 + j}{(1/c)^{a+t} - 1} \log(1/c)$$

[Meaning of rate

$$\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j}h + o(h)]$$
 as $h o 0^+]$

Transition probabilities. For $0 \le s < t$,

$$Z(t) - Z(s) \Big| Z(s) = j \sim \mathsf{NB}\left(w_0 + j, \frac{1 - c^{a+s}}{1 - c^{a+t}}\right)$$

Rates

$$\lambda_{t,j} = \frac{w_0+j}{(1/c)^{a+t}-1}\log(1/c)$$

[Meaning of rate

$$\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j}h + o(h)]$$
 as $h \to 0^+]$

Transition probabilities. For $0 \le s < t$,

$$Z(t) - Z(s) \Big| Z(s) = j \sim \mathsf{NB}\left(w_0 + j, \frac{1 - c^{a+s}}{1 - c^{a+t}}\right)$$

In particular

$$Z(t) \Rightarrow w_0 + \textit{NB}(w_0, 1 - c^a)$$
 as $t \to \infty$

Other process limits when

•
$$A^{(n)}(0) \sim an \quad B^{(n)}(0) \to \infty \text{ and } B^{(n)}(0)/n \to 0.$$

• $A^{(n)}(0) \sim an \quad B^{(n)}(0) \sim bn, \quad a, b > 0.$

Thank you!