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Based on the work:
Limit behavior of the q-Polya urn. With D. Kouloumpou. The
Ramanujan Journal 60 (1) (2023), 69-93.
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Pólya’s urn (1923)
Urn with black and white balls
Step 1: Pick a ball at random.
Step 2: Return the ball in the urn together with a ball of the same
color.

Limit behavior

r : initial number of white balls
s : initial number of black balls
An : number of white balls after n steps
Bn : number of black balls after n steps

An
An + Bn

→ L ∼ Beta(r, s)

for n→∞ with probability 1.
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q-Pólya urn
Let q ∈ (0, 1)
For x ∈ R

[x]q :=
qx − 1
q− 1

the q-analog of x. [x]q → x for q→ 1.

Urn with r white and s black balls.
• Pick at random a color with probabilities

Pq(white) = [r]q
[r + s]q

=
1− qr

1− qr+s

Pq(black) = qr [s]q
[r + s]q

• Add a ball of this color in the urn.
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Experiment realizing the probabilities:
Place the balls in order, first the white then the black.

r︷ ︸︸ ︷
W W W · · ·W W

s︷ ︸︸ ︷
B B B · · ·B B B B

• Start from left, visit each ball and pick it with probability 1− q.
• If no ball is picked out of the r + s, start again from left.
• When a ball is picked, the step is finished.

P(white) =
first round︷ ︸︸ ︷
(1− qr) +

second round︷ ︸︸ ︷
qr+s(1− qr)+q2(r+s)(1− qr) + · · ·

= (1− qr)
∞∑

j=0
(qr+s)j =

1− qr

1− qr+s

Urn giving priority to white balls
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Theorem (D. C., D. Kouloumpou, 2023) Let q ∈ (0, 1)

Xn = #extractions of black balls in first n extractions

Assume r ≥ 1.
With probability 1, Xn is finally constant.

X∞ := limn→∞ Xn has probability mass function

f(k) = qrk
[
s + k− 1

k

]
q

s−1∏
j=0

(1− qrqj)

for each k ∈ N. Negative q-binomial of the second kind with
parameters s, qr, q.

[
x
k

]
q
:=

[x]q[x− 1]q · · · [x− k + 1]q
[1]q[2]q · · · [k]q
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Simple argument for P(X <∞) = 1

Bn := number of white balls after n extractions

Bn ≥ Y1 + Y2 + · · ·+ Yn

Yi: i.i.d. Bernoulli(1− q)

En := {black in the n-th extraction}

P(En+1) = E{P(En+1|Bn)} ≤

no white in first round︷ ︸︸ ︷
E(qBn) ≤ (E{qY1)}n∑∞

n=1 P(En) <∞

Apply 1st Borel-Cantelli.
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The proof
The pmf of Xn is known

P(Xn = k) = qrk

[s+k−1
k

]
q
[r+n−k−1

n−k
]

q[r+s+n−1
n

]
q

limn→∞ P(Xn = k) can be calculated using

lim
n→∞

[
m + n

n

]
q
=

1
(1− q)(1− q2) · · · (1− qm)
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X∞ =total number of black balls added

E(X∞) =
r+s−1∑

j=r

qj

1− qj ∼
qr

1− qr
1− qs

1− q

Tf := largest draw that gives black ball

P(Tf ≥ n) ∼ qn

Next: Functional limit theorems
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The basic paradigm

(Xi)i≥1: i.i.d with E(X1) = 0,Var(X1) = 1.
Sk := X1 + · · ·+ Xk

Strong law of large numbers: With probability 1, as n→∞,

Sn
n → 0

Central limit theorem:
√

nSn
n =

Sn√
n ⇒ Z ∼ N(0, 1)

Donsker’s theorem. Functional CLT :(
Snt√

n

)
t≥0
⇒ (Wt)t≥0 ← Brownian motion
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A functional CLT for the q-Pólya urn

c ∈ (0, 1), a > 0 fixed.
For each n ∈ N+ a different q-urn

qn : = c1/n ∈ (0, 1) → 1 as m→∞
A(n)(0) = [an] initial number of white balls
B(n)(0) = w0 initial number of black balls

A(n)(k) := #white balls after k steps
B(n)(k) := #black balls after k steps

Theorem (D. C. , D. Kouloumpou, 2023)
As n→∞

{B(n)([nt])− B(n)(0)}t≥0 ⇒ {Z(t)}t≥0

Z a pure birth process inhomogeneous in time
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Rates

λt,j =
w0 + j

(1/c)a+t − 1 log(1/c)

[Meaning of rate

P(Z(t + h)− Z(t) = 1|Z(t) = j) = λt,jh + o(h)] as h→ 0+]

Transition probabilities. For 0 ≤ s < t,

Z(t)− Z(s)
∣∣∣Z(s) = j ∼ NB

(
w0 + j, 1− ca+s

1− ca+t

)

In particular

Z(t)⇒ w0 + NB(w0, 1− ca) as t→∞
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Other process limits when
•A(n)(0) ∼ an B(n)(0)→∞ and B(n)(0)/n→ 0.
•A(n)(0) ∼ an B(n)(0) ∼ bn, a, b > 0.
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Thank you!
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