Limit theorems for the *q*-Pólya urn

Dimitris Cheliotis

Department of Mathematics National and Kapodistrian University of Athens

Conference in memory of Professor Charalambos Charalambides October 5, 2024

Based on the work:

Limit behavior of the q-Polya urn. With D. Kouloumpou. The Ramanujan Journal 60 (1) (2023), 69-93.

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Limit behavior

- *r* : initial number of white balls
- *s* : initial number of black balls
- *Aⁿ* : number of white balls after *n* steps
- *Bⁿ* : number of black balls after *n* steps

Pólya's urn (1923)

Urn with black and white balls

Step 1: Pick a ball at random.

Step 2: Return the ball in the urn together with a ball of the same color.

Limit behavior

- *r* : initial number of white balls
- *s* : initial number of black balls
- *Aⁿ* : number of white balls after *n* steps
- *Bⁿ* : number of black balls after *n* steps

$$
\frac{A_n}{A_n+B_n}\to L\sim Beta(r,s)
$$

for $n \to \infty$ with probability 1.

*q***-Pólya urn**

Let *q* ∈ $(0, 1)$ For $x \in \mathbb{R}$ $[x]_q := \frac{q^x - 1}{q}$ *q −* 1

the *q*-analog of *x*. $[x]_q \rightarrow x$ for $q \rightarrow 1$.

*q***-Pólya urn**

q − 1

Let *q* ∈ $(0, 1)$ For $x \in \mathbb{R}$ $[x]_q := \frac{q^x - 1}{q}$

the *q*-analog of *x*. $[x]_q \rightarrow x$ for $q \rightarrow 1$.

Urn with *r* white and *s* black balls.

• Pick at random a color with probabilities

$$
P_q(\text{white}) = \frac{[r]_q}{[r+s]_q} = \frac{1 - q^r}{1 - q^{r+s}}
$$

$$
P_q(\text{black}) = q^r \frac{[s]_q}{[r+s]_q}
$$

• Add a ball of this color in the urn.

Experiment realizing the probabilities:

Place the balls in order, first the white then the black.

$$
\overbrace{WWW\cdots WW}\overset{s}{BBB\cdots BBB}
$$

- *•* Start from left, visit each ball and pick it with probability 1 *− q*.
- If no ball is picked out of the $r + s$, start again from left.
- *•* When a ball is picked, the step is finished.

Experiment realizing the probabilities:

Place the balls in order, first the white then the black.

$$
\overbrace{WWW\cdots WW}\overset{s}{BBB\cdots BBB}
$$

- *•* Start from left, visit each ball and pick it with probability 1 *− q*.
- If no ball is picked out of the $r + s$, start again from left.
- *•* When a ball is picked, the step is finished.

$$
P(\text{white}) = \overbrace{(1-q')}\limits^{first\text{ round}} + \overbrace{q^{r+s}(1-q')}\limits^{second\text{ round}} + q^{2(r+s)}(1-q') + \cdots
$$
\n
$$
= (1-q')\sum_{j=0}^{\infty} (q^{r+s})^j = \frac{1-q^r}{1-q^{r+s}}
$$

Urn giving priority to white balls

Theorem (D. C., D. Kouloumpou, 2023) Let *q ∈* (0*,* 1)

 $X_n = \text{\#extractions of black balls in first } n \text{ extractions}$

Assume $r > 1$. With probability 1, *Xⁿ* is finally constant.

 X_{∞} := lim_{*n*→∞} X_n has probability mass function

$$
f(k)=q^{rk}\binom{s+k-1}{k}_{q}\prod_{j=0}^{s-1}(1-q^rq^j)
$$

for each $k \in \mathbb{N}$. Negative *q*-binomial of the second kind with parameters *s, q r , q*.

Theorem (D. C., D. Kouloumpou, 2023) Let *q ∈* (0*,* 1)

 $X_n = \text{\#extractions}$ of black balls in first *n* extractions

Assume $r > 1$. With probability 1, *Xⁿ* is finally constant.

 X_{∞} := lim_{*n*→∞} X_n has probability mass function

$$
f(k)=q^{rk}\binom{s+k-1}{k}_{q}\prod_{j=0}^{s-1}(1-q^rq^j)
$$

for each $k \in \mathbb{N}$. Negative q -binomial of the second kind with parameters *s, q r , q*.

$$
\begin{bmatrix} x \\ k \end{bmatrix}_q := \frac{[x]_q [x-1]_q \cdots [x-k+1]_q}{[1]_q [2]_q \cdots [k]_q}
$$

Simple argument for $P(X < \infty) = 1$

 $B_n :=$ number of white balls after *n* extractions

 $B_n > Y_1 + Y_2 + \cdots + Y_n$

Y_i: i.i.d. Bernoulli(1 − *q*)

 $E_n := \{$ black in the *n*-th extraction $\}$

Simple argument for $P(X < \infty) = 1$

 $B_n :=$ number of white balls after *n* extractions

 $B_n > Y_1 + Y_2 + \cdots + Y_n$

Y_i: i.i.d. Bernoulli(1 − *q*)

 $E_n := \{$ black in the *n*-th extraction $\}$

$$
\mathsf{P}(E_{n+1}) = \mathsf{E}\{\mathsf{P}(E_{n+1}|B_n)\} \le \mathsf{E}(q^{B_n}) \le (\mathsf{E}\{q^{Y_1}\})^n
$$

$$
\sum_{n=1}^{\infty} \mathsf{P}(E_n) < \infty
$$

Apply 1st Borel-Cantelli.

The proof The pmf of X_n is known

$$
\mathbf{P}(X_n = k) = q^{rk} \frac{\binom{5+k-1}{k} q^{\binom{r+n-k-1}{n-k}}}{\binom{r+s+n-1}{n} q}
$$

lim_{*n*→∞} $P(X_n = k)$ can be calculated using

$$
\lim_{n\to\infty}\begin{bmatrix}m+n\\n\end{bmatrix}_q=\frac{1}{(1-q)(1-q^2)\cdots(1-q^m)}
$$

*X*_∞ =total number of black balls added

$$
\mathsf{E}(X_{\infty}) = \sum_{j=r}^{r+s-1} \frac{q^j}{1-q^j} \sim \frac{q^r}{1-q^r} \frac{1-q^s}{1-q}
$$

 T_f := largest draw that gives black ball

P(T_f ≥ *n*) \sim *q*^{*n*}

Next: Functional limit theorems

The basic paradigm

$$
(X_i)_{i\geq 1}
$$
: i.i.d with $E(X_1) = 0$, $Var(X_1) = 1$.
\n $S_k := X_1 + \cdots + X_k$

Strong law of large numbers: With probability 1, as $n \to \infty$,

$$
\frac{S_n}{n}\to 0
$$

Central limit theorem:

$$
\sqrt{n}\frac{S_n}{n}=\frac{S_n}{\sqrt{n}}\Rightarrow Z\sim N(0,1)
$$

Donsker's theorem. Functional CLT :

$$
\left(\frac{S_{nt}}{\sqrt{n}}\right)_{t\geq 0} \Rightarrow (W_t)_{t\geq 0} \leftarrow \text{Brownian motion}
$$

A functional CLT for the *q***-Pólya urn**

 c ∈ (0, 1)*, a* > 0 fixed. For each *n ∈* N ⁺ a different *q*-urn

$$
q_n := c^{1/n} \in (0, 1) \qquad \longrightarrow 1 \text{ as } m \to \infty
$$

$$
A^{(n)}(0) = [an] \qquad \text{initial number of white balls}
$$

$$
B^{(n)}(0) = w_0 \qquad \text{initial number of black balls}
$$

$$
A^{(n)}(k) := \# \text{white balls after } k \text{ steps}
$$

$$
B^{(n)}(k) := \# \text{black balls after } k \text{ steps}
$$

A functional CLT for the *q***-Pólya urn**

c ∈ $(0, 1)$ *, a* > 0 fixed. For each *n ∈* N ⁺ a different *q*-urn

$$
q_n := c^{1/n} \in (0, 1) \qquad \longrightarrow 1 \text{ as } m \to \infty
$$

$$
A^{(n)}(0) = [an] \qquad \text{initial number of white balls}
$$

$$
B^{(n)}(0) = w_0 \qquad \text{initial number of black balls}
$$

$$
A^{(n)}(k) := \# \text{white balls after } k \text{ steps}
$$

$$
B^{(n)}(k) := \# \text{black balls after } k \text{ steps}
$$

Theorem (D. C. , D. Kouloumpou, 2023) As $n \to \infty$

$$
\{B^{(n)}([nt])-B^{(n)}(0)\}_{t\geq 0}\Rightarrow \{Z(t)\}_{t\geq 0}
$$

Z a pure birth process inhomogeneous in time

Rates

$$
\lambda_{t,j}=\frac{w_0+j}{(1/c)^{a+t}-1}\log(1/c)
$$

[Meaning of rate

$$
\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j} h + o(h)] \text{ as } h \to 0^+
$$

Rates

$$
\lambda_{t,j} = \frac{w_0+j}{(1/c)^{a+t}-1} \log(1/c)
$$

[Meaning of rate

$$
\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j} h + o(h)] \text{ as } h \to 0^+
$$

Transition probabilities. For $0 \le s < t$,

$$
Z(t) - Z(s)\Big|Z(s) = j \sim \text{NB}\left(w_0 + j, \frac{1 - c^{a+s}}{1 - c^{a+t}}\right)
$$

Rates

$$
\lambda_{t,j} = \frac{w_0+j}{(1/c)^{a+t}-1} \log(1/c)
$$

[Meaning of rate

$$
\mathbf{P}(Z(t+h) - Z(t) = 1 | Z(t) = j) = \lambda_{t,j} h + o(h)] \text{ as } h \to 0^+
$$

Transition probabilities. For $0 \le s < t$,

$$
Z(t) - Z(s)\Big|Z(s) = j \sim \text{NB}\left(w_0 + j, \frac{1 - c^{a+s}}{1 - c^{a+t}}\right)
$$

In particular

$$
Z(t) \Rightarrow w_0 + NB(w_0, 1 - c^a) \text{ as } t \to \infty
$$

Other process limits when

$$
\bullet A^{(n)}(0) \sim an \quad B^{(n)}(0) \to \infty \text{ and } B^{(n)}(0)/n \to 0.
$$

$$
\bullet A^{(n)}(0) \sim an \quad B^{(n)}(0) \sim bn, \quad a, b > 0.
$$

Thank you!