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Markov chains with binomial transitions

• Evolution of population growth or queueing models with
synchronized actions → Markov chains with binomial transitions.

• At certain time points (service completions, abandonment epochs,
etc) the present customers/units decide independently whether
to leave the system or not, with the same probability p.
→
The number of customers is reduced according to a binomial
distribution.

• Transition rates:

n → m : rate×
(
n

m

)
pn−m(1− p)m =

(
n

m

)
pn−mqm.

• System with synchronization 7→ state inhomogeneous Markov
chains.

• Synchronization 7→ Binomial rates dependent on the state n.
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The Poisson process with binomial catastrophes
• Poisson immigration process at rate λ.
• Catastrophes occur at rate µ according to a renewal process.
• At a catastrophe epoch each unit is destroyed with probability p,

or survives with probability q = 1− p, independently of the
others.

• N(t) : number of units in the system at time t (in case where the
catastrophe process is Poisson).

• {(N(t) : t ≥ 0) is a CTMC with diagram:

0
λ

// 1
(10)pµxx

λ
// 2

(21)pqµxx

(20)p
2µ

~~
λ

// 3
(32)pq

2µ
xx

(31)p
2qµ

~~

(30)p
3µ

��

λ
// · · ·

• Economou JAP
• Artalejo, Economou and Lopez-Herrero MBE



Modeling Steady-state distribution Absorption times Conclusions

A model with setup times and synchronized services
• Poisson arrival process at rate λ.
• Single server, who serves simultaneously all present customers.

The successive service times follow Exp(µ).
• At a service completion epoch, each customer is satisfied and

departs with probability p or repeats his service with q = 1− p
• Empty system → deactivation of the server.
• Arrival at an empty system → Setup time∼Exp(ϑ).
• N(t) : number of customers in the system at time t.
• I(t) : state of the server at time t (0=off and 1=on).
• {(N(t), I(t)) : t ≥ 0} is a CTMC with diagram:

1,1(10)pµ

��
λ

// 2,1
(21)pqµww

(20)p
2µ

��
λ

// 3,1
(32)pq

2µww

(31)p
2qµ

||

(30)p
3µ

��
λ

// ···

0,0
λ

// 1,0
ϑ
OO

λ
// 2,0
ϑ
OO

λ
// 3,0
ϑ
OO

λ
// ···

• Economou and Kapodistria, PEIS.
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Analysis

• Study of the steady-state behavior (stationary
probabilities/moments: exact formulas or recursive schemes).

• Study of the times from a given state to an empty system (busy
periods, population cycles).

• Study of the limiting behavior in the case of high rate of
synchronization events.

• Bounds, approximations etc.
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The model with setup times and synchronized services:
Generating functions for the steady-state distribution

1,1(10)pµ

��
λ

// 2,1
(21)pqµww

(20)p
2µ

��
λ

// 3,1

Π0(z) =
∞∑

n=0
π(n, 0)zn

Π1(z) =
∞∑

n=1
π(n, 1)zn

(32)pq
2µww

(31)p
2qµ

||

(30)p
3µ

��
λ

// ···

0,0
λ

// 1,0
ϑ
OO

λ
// 2,0
ϑ
OO

λ
// 3,0
ϑ
OO

λ
// ···

• Balance equations:

λπ(0, 0) = µ

∞∑
n=1

pnπ(n, 1) = µΠ1(p)

(λ+ ϑ)π(n, 0) = λπ(n− 1, 0), n ≥ 1

(λ+ µ)π(1, 1) = ϑπ(1, 0) + µ

∞∑
j=1

(
j

1

)
pj−1qπ(j, 1)

(λ+ µ)π(n, 1) = ϑπ(n, 0) + λπ(n− 1, 1) + µ

∞∑
j=n

(
j

n

)
pj−nqnπ(j, 1) , n ≥ 2.
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The model with setup times and synchronized services:
Generating functions for the steady-state distribution

• Transforming the balance equations for states (n, 0) to a single
equation for Π0(z):

z0× λπ(0, 0) = µ

∞∑
n=1

pnπ(n, 1) = µΠ1(p)

zn× (λ+ ϑ)π(n, 0) = λπ(n− 1, 0), n ≥ 1

⇓
∑

(λ+ ϑ)Π0(z)− (λ+ ϑ)π(0, 0) = λzΠ0(z)

⇓

Π0(z) =
λ+ ϑ

λ+ ϑ− λz
π(0, 0)
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The model with setup times and synchronized services:
Generating functions for the steady-state distribution

• Transforming the balance equations for states (n, 1) to a single
equation for Π0(1):

z× (λ+ µ)π(1, 1) = ϑπ(1, 0) + µ

∞∑
j=1

(
j

1

)
pj−1qπ(j, 1)

zn× (λ+ µ)π(n, 1) = ϑπ(n, 0) + λπ(n− 1, 1)

+µ

∞∑
j=n

(
j

n

)
pj−nqnπ(j, 1) , n ≥ 2.

⇓
∑

(λ+ µ)Π1(z) = ϑ(Π0(z)− π(0, 0) + λzΠ1(z) + µΠ1(1− q + qz)

⇕

(λ+ µ− λz)Π1(z) = µΠ1(1− q + qz) +
λ(λ+ ϑ)

λ+ ϑ− λz
(z − 1)π(0, 0).

A(z)Π1(z) = B(z)Π1(1− q + qz) + Γ(z).
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The general scheme: Generating functions for the
steady-state distribution

• Transforming the balance equations of Markov chains with
binomial transitions always lead to equation of type

A(z)Π(z) = B(z)Π(1− q + qz) + Γ(z).

(Similar to branching MC with immigration)

• The target: Solve such equations for Π(z).

• Solving for Π(z):

Π(z) =
B(z)

A(z)
Π(1− q + qz) +

Γ(z)

A(z)
.

• Setting z := 1− q + qz:

Π(1− q + qz) =
B(1− q + qz)

A(1− q + qz)
Π(1− q2 + q2z) +

Γ(1− q + qz)

A(1− q + qz)
.
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The general scheme: Generating functions for the
steady-state distribution

• Plugging the expression for Π(1− q + qz) in the formula for Π(z)
yields

Π(z) =
B(z)B(1− q + qz)

A(z)A(1− q + qz)
Π(1− q2 + q2z)

+
B(z)Γ(1− q + qz)

A(z)A(1− q + qz)
+

Γ(z)

A(z)
.

• Iterating yields:

Π(z) =

n∏
i=0

B(1− qi + qiz)

n∏
i=0

A(1− qi + qiz)
Π(1− qn+1 + qn+1z)

+
n∑

k=0

Γ(1− qk + qkz)

k−1∏
i=0

B(1− qi + qiz)

k∏
i=0

A(1− qi + qiz)

.
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The general scheme: Generating functions for the
steady-state distribution

• Taking n → ∞ yields

Π(z) =

∞∏
i=0

B(1− qi + qiz)

∞∏
i=0

A(1− qi + qiz)
Π(1)

+

∞∑
k=0

Γ(1− qk + qkz)

k−1∏
i=0

B(1− qi + qiz)

k∏
i=0

A(1− qi + qiz)

.
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The general scheme: Generating functions for the
steady-state distribution

• What makes the scheme works?
The fact that the n-th compositions of the transformation
S(z) = 1− q + qz are easily calculable:

S◦n(z) = (S ◦ S ◦ · · · ◦ S)(z) = 1− qn + qnz.

The fact that limn→∞ S◦n(z) = 1, for q ∈ [0, 1).
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Applying the general scheme on the model with setup
times and synchronized services

Π1(z) =
B(z)
A(z)Π1(1− q + qz) + Γ(z)

A(z)

Π0(z) =
λ+ϑ

λ+ϑ−λzπ(0, 0)

A(z) = λ+ µ− λz
B(z) = µ

Γ(z) = λ(λ+ϑ)
λ+ϑ−λz (z − 1)π(0, 0)

Π1(z) =

∞∏
i=0

µ

µ+ λ(1− z)qi
Π1(1)

+
λ

µ
(λ+ ϑ)π(0, 0)(z − 1)

∞∑
k=0

qi

ϑ+ λ(1− z)qk

k∏
i=0

µ

µ+ λ(1− z)qi

Moreover, Π0(1) + Π1(1) = 1 which yields the value of π(0, 0) and
therefore Π1(1).
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q-hypergeometric series
• q-shifted factorial:

(a; q)0 = 1,

(a; q)n = (1− a)(1− aq)(1− aq2) · · · (1− aqn−1), n ≥ 1,

(a; q)∞ =

∞∏
k=0

(1− aqk).

• q-analogues of the exponential function ez:

eq(z) =
1

(z; q)∞
,

Eq(z) = (−z; q)∞.

• q-hypergeometric series:

rϕs

(
a1, a2, . . . , ar
b1, . . . , bs

; q, z

)
≡ rϕs(a1, a2, . . . , ar; b1, b2, . . . , bs; q, z)

=
∞∑

n=0

(a1; q)n(a2; q)n · · · (ar; q)n
(q; q)n(b1; q)n · · · (bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn,
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The model with setup times and synchronized services:
Generating functions for the steady-state distribution

Theorem
The equilibrium state probability of an empty system π(0, 0) is given by

π(0, 0) =

[
λ+ ϑ

ϑ
+

λ

λ+ µ
Eq

(
λ

µ

)
3ϕ2

(
−λ

ϑ
, q, 0;−λ

ϑ
q,−λ

µ
q; q, q

)]−1

.

The partial probability generating functions Π0(z) and Π1(z) are given
by

Π0(z) =
λ+ ϑ

λ+ ϑ− λz
π(0, 0)

Π1(z) =

[
1− λ+ ϑ

ϑ
π(0, 0)

]
eq

(
−λ

µ
(1− z)

)
− λ(λ+ ϑ)(1− z)

(λ+ ϑ− λz)(λ+ µ− λz)
×

×π(0, 0) 3ϕ2

(
−λ

ϑ (1− z), q, 0
−λ

ϑq(1− z),−λ
µq(1− z)

; q, q

)
.
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The model with setup times and synchronized services:
Exact formulas for steady-state moments

Theorem
The factorial moments m(n) = E[N(N − 1)(N − 2) · · · (N − n+ 1)] of
the equilibrium number of customers in the system are given by

m(n) =
(λ+ ϑ)λnn!

ϑn+1
π(0, 0) +

n∑
k=1

(λ+ ϑ)λnn!

ϑkµn−k+1

(q; q)k−1

(q; q)n
π(0, 0)

+
λnn!

µn
(q; q)n

[
1− λ+ ϑ

ϑ
π(0, 0)

]
, n ≥ 1. (1)

Proof: Applying q-hypergeometric series identities and expand the
factorial moment generating function P (z) = Π0(z) + Π1(z).
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The general scheme: Recursive scheme for for
steady-state moments

• We start with the ‘ubiquitous’ type of generating function
equation for Markov chains with binomial transitions:

A(z)Π(z) = B(z)Π(1− q + qz) + Γ(z)

• We differentiate it n times and evaluate at z = 1:

n∑
k=0

(
n

k

)
A(k)(1)Π(n−k)(1) =

n∑
k=0

(
n

k

)
B(k)(1)qn−kΠ(n−k)(1)

+Γ(n)(1).

• We solve for Π(n)(1) in terms of Π(k)(1), k = 1, 2, . . . , n− 1.
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The model with setup times and synchronized services:
Time to an empty system (remaining busy period)

• φ(n,i)(s) = E[e−sT(n,i) ]: the Laplace-Stieltjes transform of a first
passage time to state (0, 0) starting from (n, i).

• First step analysis:

φ(0,0)(s) = 1

φ(n,0)(s) =
λ

λ+ ϑ+ s
φ(n+1,0)(s) +

ϑ

λ+ ϑ+ s
φ(n,1)(s), n ≥ 1

φ(n,1)(s) =
λ

λ+ µ+ s
φ(n+1,1)(s) +

µpn

λ+ µ+ s

+
µ

λ+ µ+ s

n∑
j=1

(
n

n− j

)
pn−jqjφ(j,1)(s), n ≥ 1.
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The model with setup times and synchronized services:
Time to an empty system (remaining busy period)

• We define the mixed transforms Φ0(s, z), Φ1(s, z) (i.e. the
generating functions of the Laplace-Stieltjes transforms):

Φ0(z) ≡ Φ0(s, z) =
∞∑

n=0

φ(n,0)(s)z
n,

Φ1(z) ≡ Φ1(s, z) =

∞∑
n=1

φ(n,1)(s)z
n.
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The model with setup times and synchronized services:
Time to an empty system (remaining busy period)

• We apply the standard generating function approach:
Multiplying the equation for (n, i) by zn and adding for all n:

zn × φ(n,1)(s) =
λ

λ+ µ+ s
φ(n+1,1)(s) +

µpn

λ+ µ+ s

+
µ

λ+ µ+ s

n∑
j=1

(
n

n− j

)
pn−jqjφ(j,1)(s),

⇓
∑
n

[(λ+ µ+ s)z − λ] Φ1(s, z) =
µpz2

1− pz
− λzφ(1,1)(s)

+
µz

1− pz
Φ1(s,

qz

1− (1− q)z
)

A(z)Φ1(z) = B(z)Φ1(
qz

1− (1− q)z
) + Γ(z).
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The general scheme: Generating functions for the
Laplace-Stieltjes transforms

• Transforming the first-step analysis equations for the absorption
times to an empty system for Markov chains with binomial
transitions leads to equations of the form

A(z)Φ1(z) = B(z)Φ1(
qz

1− (1− q)z
) + Γ(z).

• The target: Solve such equations for Φ1(z).
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The general scheme: Generating functions for the
Laplace-Stieltjes transforms

• Let

T0(z) = z

T1(z) =
qz

1− (1− q)z

Tk+1(z) = T1(Tk(z)), k ≥ 1

• Iteration and taking the limit works similarly to the case of the
steady-state distribution.

• What makes the scheme works?
The fact that the n-th compositions of the transformation
T (z) = qz

1−(1−q)z are easily calculable:

T ◦n(z) = (T ◦ T ◦ · · · ◦ T )(z) = qnz

1− (1− qn)z
.

The fact that limn→∞ T ◦n(z) = 0.
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The general scheme: Generating functions for the
Laplace-Stieltjes transforms

• Iterating the basic equation

A(z)Φ1(z) = B(z)Φ1(
qz

1− (1− q)z
) + Γ(z)

n times and taking n → ∞ yields a closed formula for Φ1(z).
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Conclusions

• Unified framework for Markov chains with binomial transitions.

• Computational schemes for

* the steady-state distribution,
* the steady-state moments,
* the Laplace-Stieltjes tranforms of first-passage times to empty

system,

using the theory of basic q-hypergeometric series.

• Formal convergence results for high and low level of
synchronization.

• Approximations and bounds for the main performance
descriptors.
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