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Finding the Expected Value of Random Quantities; LCS

▶ Finding the expected value of random quantities is often
non-trivial!

▶ This occurs when the quantity in question is unexpectedly
nuanced;

▶ For example, if we have two binary strings of length n, then it
is natural to ask what can be said about the length Ln of their
longest common subsequence (LCS).

▶ This could be of biological relevance in the case of two DNA
strings.

▶ Subadditivity arguments are easy to apply to prove that
L = limn→∞

E(Ln)
n exists.
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More on the LCS Problem

▶ The value of the limit L, however, is still not known!

▶ The best known bounds are, roughly, 0.78 ≤ L ≤ 0.82.

▶ The variance is of order n and in 2014, Houdré proved a CLT.
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LIS

▶ More is known about the length of the longest increasing
subsequence (LIS) of a random permutation, the study of
which culminated in the celebrated paper of Baik, Deift, and
Johansson (1998).

▶ But even here, calculation of the expected value was
non-trivial.

▶ The combined results of Vershik and Kerov; and Logan and
Shepp from the 1970’s gave

lim
ELn√

n
= 2.
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Tracy Widom Distribution

This was followed by concentration results—due to Bollobas and
Janson; Kim; and Frieze among others—that revealed that the
standard deviation of the size of the longest monotone
subsequence (LMS) is of order Θ(n1/6),

This culminated with the work of Baik, Deift and Johansson (cited
earlier) that exhibited the limiting law of a normalized version of
the LMS (Tracy Widom distribution).

This is often cited as one of the crowning achievements of
Probability/Analysis of the 20th Century. An AMS Notices article
of Aldous and Diaconis gives a great summary.
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The Two Examples and our Problem

▶ The above two examples are of two problems about which a
lot is known after a slow start.

▶ First, we consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

▶ For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

▶ The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

▶ What is the average case behavior?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



The Two Examples and our Problem

▶ The above two examples are of two problems about which a
lot is known after a slow start.

▶ First, we consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

▶ For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

▶ The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

▶ What is the average case behavior?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



The Two Examples and our Problem

▶ The above two examples are of two problems about which a
lot is known after a slow start.

▶ First, we consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

▶ For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

▶ The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

▶ What is the average case behavior?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



The Two Examples and our Problem

▶ The above two examples are of two problems about which a
lot is known after a slow start.

▶ First, we consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

▶ For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

▶ The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

▶ What is the average case behavior?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



The Two Examples and our Problem

▶ The above two examples are of two problems about which a
lot is known after a slow start.

▶ First, we consider a random binary string and ask how many
subsequences are embedded in it. We will make the slow start.

▶ For example the string 11111 has 5 subsequences, namely 1,
11, 111, 1111, and 11111, whereas

▶ The string 10110 contains the subsequences 0, 1, 01, 10, 11,
00, 100, 101, 110, 111, 011, 010, 1011, 1010, 1110, 0110,
and 10110.

▶ What is the average case behavior?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



Collaborators

This talk about joint work with

▶ Biers-Ariel and Kelley (DMTCS);

▶ Allen, Cruz-Fonseca, Dobbs, Downs, Fokuoh, Papanikolaou,
Soto, and Yoshikawa (the so-called9PP) (PuMA);

▶ Swickheimer (DMTCS 2024); and

▶ Borras-Serrano, Byrne, Jackson, LeBlanc and Veimau
(preprint).
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Existence

In the DMTCS paper, we proved

Theorem
Let s1, s2, . . . be a sequence of independent and identically
distributed random variables with
Pr(s1 = j) = αj , j = 1, 2, . . . , d ,

∑
j αj = 1. Set α = (α1, . . . , αd).

Let ϕ(Sn) be the number of distinct subsequences in
Sn = (s1, . . . , sn). Let ψ(n) = E (ϕ(Sn)). Then there exists
c = cd ,α ≥ 1 such that

ψ(n)1/n → c; n → ∞,

where c = 1 iff d ≥ 1 and maxj αj = 1.
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Discussion

▶ The above theorem is hardly surprising, but raises other
questions, namely whether the “true” numbers contain,
additionally, polynomial factors as do several Stanley-Wilf
limits in the theory of pattern avoidance (note that there are
no polynomial factors in our next result with d = 2) Also, in
general the existence of limits is not automatic, as seen by the
following example:

▶ Assume that n balls are independently thrown into an infinite
array of boxes so that box j is hit with probability 1/2j for
j = 1, 2, . . .. Let πn be the probability that the largest
occupied box has a single ball in it. Then, as proved by
several people in the 1990’s, limn→∞ πn does not exist, and
lim supn→∞ πn and lim infn→∞ πn differ in the fourth decimal
place! Such behavior does not however occur in our context,
as the theorem states.
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The case of d = 2

Theorem
Suppose Pr[si = 1] = α ∈ [0, 1] for all 1 ≤ i ≤ n, and
Pr[si = 0] = 1− α, α ̸= 0, 1. Then we have

ψ(Sn) =
A+ B

2
√
α(1− α)

,

where

A =
(
1− 2

√
α(1− α)

)(
1−

(
1−

√
α(1− α)

)n)
and

B =
(
1 + 2

√
α(1− α)

)((
1 +

√
α(1− α)

)n − 1
)
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Result was Previously Known for α = 0.5

It was shown in a 2004 EJC paper of Flaxman et al.that when
Pr[si = 1] = .5 then E [ϕ(Sn)] ∼ k(32)

n for a constant k . Later,
Collins improved this result by finding that E [ϕ(Sn)] = 2(32)

n − 1.
We generalized this in the previous theorem to non-uniform letter
generation. Two state Markov chains were also considered.

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



Permutations

How do these questions translate to permutations? What is the
number of distinct patterns contained (consecutively or
non-consecutively) in a random permutation on [n]?

•The permutation 34152 consecutively contains the patterns 1, 12,
21, 231, 213, 132, 2314, 3142, and 34152. This is the maximum
possible.
•The permutation 34152 non-consecutively contains the patterns
1,12, 21, 231, 213, 132, 123, 312, 2314, 3142, 2341, 3412, and
34152. This is NOT the maximum possible.
•The minimum number of consecutive or non-consecutive patterns
is n, as given by the permutation 123 . . . n.
•Alison Miller (2009) proved, answering a question by Wilf from
2003, and improving previous results due to e.g., Coleman (2004),
Albert et al (2007), that

2n − O(n22n−
√
2n) ≤ max

πn∈Sn
ϕ(πn) ≤ 2n −Θ(n2n−

√
2n).
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Consecutive Case

▶ In the consecutive case it is easy to see that the maximum
number of possible patterns is

∑n
k=1min{k!, (n − k + 1)}.

This bound can be attained for 1 ≤ n ≤ 12 (data not
provided).

▶ BUT, more importantly, can the expected value of X , the
number of distinct subpatterns, be close to the maximum
value

∑
1≤k≤n min{k!, (n − k + 1)} = n2

2 (1− o(1)) as it does
for n ≤ 12 (data not provided)?
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Results for Consecutive Case

With X = Xn denoting the number of distinct consecutive patterns
in a random permutation

Theorem
(9PP)

E(Xn) ≥
n2

2

(
1− 200

ln n

n

)
.

Theorem
(Swickheimer and G)

E(X ) ≥ n2

2

(
1− 17

ln n

n

)
.
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X ,Y ,Z

The difference between these two 200ln n and 17ln n papers is not
just cosmetic “improved analysis”.

It is a matter of technique. In
the first paper, the authors didn’t quite know how to work with X
and so they introduced Y and Z .
*Y =

∑
k Yk= the number of repeated patterns, so that if 132

occurs 4 times, its contribution to Y3 is 3.
*Z = Zk equals the number of pairs of isomorphic patterns, so
that the contribution of 132 to Z3 =

(4
2

)
= 6 in the above example.

*Clearly, Xk =
(n
k

)
− Yk ≤

(n
k

)
− Zk .

However in the second paper, the authors recognized that a
pattern was distinct if it occurred at least once; thus

E(Xk) =
∑
j

P(Nj ≥ 1)

where Nj is the number of occurrences of the jth pattern of length
k .
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DISTRIBUTIONS

▶ In the consecutive case, Hannah Swickheimer showed that
L(Nj) ≈ Po(λ), where L(·) is the distribution of · and Po(λ)
denotes the Poisson r.v. with parameter λ = n−k+1

k! , which is
the expected number of consecutive occurrences of any
pattern of length k.

▶ In the non-consecutive case, the distribution of X appears to
be quite hard and certainly worth further investigation à la

Tracy-Widom etc. Here λ =
(nk)
k! .

▶ Our work in this area using CLTs, martingale methods such as
Azuma’s inequality, etc have borne no fruit. In a nutshell,

▶ The dependencies amongst the summands in

Nk =
∑
r∈(nk)

Ir

where Ir is one if the rth k-pattern occurs in non-consecutive
positions, are too extreme.
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Opera

▶ This is a hard problem, work on this is in progress;

▶ At the current time, this project seems like a bad opera with
few conclusions and a handful of results (two to be specific).
It is truly “all over the place”;

▶ The thought is to submit at the end of the Fall after proving
at least one new result from among the directions that will be
mentioned in the rest of the talk;

▶ There are two strategies, to continue with the X ,Y ,Z trifecta
in the non-consecutive case; and to invoke the theory of
subadditivity;

▶ A perfect long term agenda would be to find the mean,
variance, distribution, tightness of concentration etc.
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The Non-Consecutive Case, Summary of Results

▶ Can the expected value of X be close to the maximum, i.e.,
2n, as determined by Miller? (Recall that E(X ) ∼ maxX is
true in the consecutive case).

▶ Here is a summary of results, which we will address for the
rest of the talk:

▶ (Jackson and LeBlanc) have shown that E(X ) ∼ cn for some
1 < c ≤ 2.

▶ We are close, using methods of Borras-Serrano, Byrne and
Veimau, to proving that c = 2, failing which we will try to
show that

▶ c ≥ c0, perhaps c0 = 1.73 (Jackson and LeBlanc)
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The Covariance

Recall Zk counts the number of pairs of isomorphic patterns. Thus

E(Zk) =
∑
η1

∑
η2

P(π1 ≃ π2),

where η1 and η2 are two sets of k positions and π1 ≃ π2 if the
patterns in these positions are isomorphic.

This agenda is needed if we are to employ the X ,Y ,Z trifecta in
the non-consecutive case (Borras-Serrano et al.)

Clearly for P(π1 ≃ π2) > 0, we must have the overlap positions in
π1, π2 to be isomorphic.
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Bounding the Covariance

Lemma
The probability that two sets of k-positions that overlap in r
specific spots contain isomorphic patterns satisfies

P(π1 ≃ π2) ≤
(k
r

)2
r !(k − r)!22k−2r

(2k − r)!
.

The lengthy proof of the lemma consists of bounding the number
of ways in which we can assign 2k − r numbers to π1 and π2, so
that π1 ≃ π2. However, it sweeps under the rug the fact that two
patterns that are isomorphic in their overlaps need not be
isomorphic in their totality due to a poor alignment. This is a flaw!
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The lemma fails to deliver

Unfortunately this key lemma gave up too much and does not
prove to be useful to bound E(X ) as in the consecutive case.
What occurs is that for k ’s around n/2, we get∑

E(Zk) = 2n(1+o(1)) rather than
∑

E(Zk) = 2n(1−o(1)). However,
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Pairs of non-isomorphic patterns

Theorem
The expected number E(∆n) of pairs of non-isomorphic patterns
of all lengths is at least

C · 2
2n

√
n

(
1− 3

n2

)
.

If we knew, however, e.g., that most pairs of non-isomorphic
patterns were obtained by comparing two patterns from among
those in the list of distinct patterns, then, we’d have Xk ∼

√
∆k ,

and we’d be closer to our goal. However the theorem above is
useful in its own right.
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Subadditivity and Fekete’s lemma

A real sequence is subadditive if

an+m ≤ an + am

.

FEKETE’S LEMMA: If a sequence is subadditive then

lim
an
n

= inf
an
n

exists in [−∞,∞)

If it were the case that

E(Xn+m) ≥ E(X1,...,n) · E(Xn+1,...,n+m),
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Continued...

Then we’d have

− log2 E(X1,...,n+m) ≤ − log2 E(X1,...,n) + (− log2 E(Xn+1,...,n+m))

▶ or, − log2 E(Xn)
n → ℓ (by Fekete)

▶ i.e., E
1
n (Xn) → 2−ℓ:=c ,

▶ or E(Xn) ∼ cn

Our data shows that E(Xn)
1/n increases as 1, 1.414, 1.542, 1.592,

1.624, 1.650, 1.672, 1.693, 1.713, 1.730 till n = 10

so that a block argument would give E(Xn) ∼ cn for c ∈ [1.73, 2].
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Unfortunately subadditivity does not hold, but we have instead

Theorem

E(Xn) · E(Xn+1, . . . ,Xn+m) ≤ (n +m)E(Xn+m)

This helps due to the Theorem of Erdős and deBruijn which
generalizes Fekete as follows

Theorem
(DeBruijn-Erdős) Let ϕ(t) be positive and increasing for t > 0,
and assume ∫ ∞

1
ϕ(t)t−2dt <∞

Then,
if the sequence an satisfies an+m ≤ an + am + ϕ(n +m) for
1
2n ≤ m ≤ 2n, then an

n → L for L ∈ [−∞,∞)
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(DeBruijn-Erdős) Let ϕ(t) be positive and increasing for t > 0,
and assume ∫ ∞

1
ϕ(t)t−2dt <∞

Then,
if the sequence an satisfies an+m ≤ an + am + ϕ(n +m) for
1
2n ≤ m ≤ 2n, then an

n → L for L ∈ [−∞,∞)

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



Unfortunately subadditivity does not hold, but we have instead

Theorem

E(Xn) · E(Xn+1, . . . ,Xn+m) ≤ (n +m)E(Xn+m)

This helps due to the Theorem of Erdős and deBruijn which
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Consequences of Near-Subadditivity

E(Xn+m) ≥
E(Xn)E(Xm)

n +m
,

so that (all logs are to base 2)

logE(Xn+m) ≥ log(E(Xn) + log(E(Xm))− log(n +m),

or

− log(E(Xn+m) ≤ − log(E(Xn)− log(E(Xm) + log(n +m),

which shows that − logE(Xn) is near-subadditive. Fekete’s lemma
(in its improved Erdős-DeBruijn form with ϕ(n) = log n yields that

− logE(Xn)

n
→ c .

Since
1 ≤ E(Xn) ≤ 2n,

we must have
−1 ≤ c ≤ 0.
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Consequences Continued....

Thus

log
1

E(Xn)1/n
→ c ,

or
E(Xn)

1/n → 2−c ,

which proves that
E(Xn) ∼ 2−nc = 2dn,

where
0 ≤ d ≤ 1.
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Theorem

We thus have

Theorem

E(Xn)
1/n → c ∈ (1, 2].

In other words no oscillatory behavior is possible, even in the 4th
decimal place!
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Issues and Continuing Work

▶ Is E(Xn)
1/n monotone in n? This would give c ≥ 1.73.

▶ Can a weaker version of subadditivity, not quite as strong as

E(Xn) · E(Xn+1, . . . ,Xn+m) ≤ (n +m)E(Xn+m)

be proved and still yield the conclusion that

E(Xn) ≥ (1.73)n?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



Issues and Continuing Work

▶ Is E(Xn)
1/n monotone in n? This would give c ≥ 1.73.

▶ Can a weaker version of subadditivity, not quite as strong as

E(Xn) · E(Xn+1, . . . ,Xn+m) ≤ (n +m)E(Xn+m)

be proved and still yield the conclusion that

E(Xn) ≥ (1.73)n?

Anant Godbole Expected Number of Distinct Non-Consecutive Patterns in Random Permutations



We know that

E(Xn+m) ≥
E(Xn)E(Xm)

n +m
,

Similarly, we can prove that

E(Xn+m) ≤
(
n +m

m

)
E(Xn)E(Xm)

n +m
,

so that

E(Xn)E(Xm)

n +m
≤ E(Xn+m) ≤

(
n +m

m

)
E(Xn)E(Xm)

n +m
,

However this is too weak to give two sided estimates that allow
rates of convergence in Erdős-deBruijn (Steele, Hammersley) to be
applied to yield 1.73 or better. Can the exponential factor

(n+m
m

)
be improved?.
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Other tries have included

▶ The use of Kleitman’s lemma and other tools from lattice
theory/the theory of correlation inequalities;

▶ ignoring and enumerating “inconvenient permutations”, i.e.,
those for which are those for which Xn+m ≥ X1,...,nXn+1,...,n+m

does not hold. Examples include the two monotone
permutations and 123 · · · (n − 2)(n)(n − 1). Hopefully these
exceptions will still allow
E(Xn+m) ≥ E(X1,...,n)E(Xn+1,...,n+m).
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Quotes

(Steele) “The determination of the limiting constant is often
difficult. In fact, there are fewer than a handful of cases where we
are able to calculate the limiting constant obtained by a
subadditivity argument; even good approximations of the constants
often require considerable ingenuity.”

(Steele) “By and large subadditivity offers only elementary tools,
but on remarkably many occasions such tools provide the key
organizing principle in the attack on problems of nearly intractable
difficulty.”
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