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Introduction

Expansions of real numbers

Expansions of real numbers

I The Lüroth series (1883): Every real number x ∈ (0, 1]

x =
1

d1
+

1

(s1) d2
+ · · ·+ 1

(s1 · · · sn) dn+1
+ · · · =

∞∑
k=1

1(∏k−1
h=1 sh

)
dk

where (dn)n>1 = (dn(x))n>1 is a sequence of integers ≥ 2 and
sn = dn (dn − 1) , n > 1.

I The Engel series (1913): Every real number x ∈ (0, 1):

x =
1

d1
+

1

d1d2
+ · · ·+ 1

d1d2 · · · dn
+ · · · =

∞∑
k=1

k∏
h=1

1

dk

where (dn)n>1 = (dn(x))n>1 is a non-decreasing sequence of positive
integers uniquely defined in terms of x .
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Introduction

Expansions of real numbers

Expansions of real numbers

I The Sylvester series (see for example Perron (1960)): Every real number
x ∈ (0, 1):

x =
1

d1
+

1

d2
+ · · ·+ 1

dn
+ · · · =

∞∑
k=0

1

dk

where (dn)n>1 = (dn(x))n>1 is a sequence of positive integers uniquely
defined in terms of x .
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Introduction

Expansions of real numbers

Expansions of real numbers

Oppenheim series (Oppenheim (1972)): Let (γn)n>1 be a sequence of positive
rational-valued functions defined on N\{1} and satisfying

γn(h) >
1

h(h − 1)
for all n > 1.

For x ∈ (0, 1), the Oppenheim expansion of x is

x =
1

d1
+ γ1 (d1)

1

d2
+ · · ·+ γ1 (d1) · · · γn (dn)

1

dn+1
+ · · ·

=
∞∑
k=1

{
k−1∏
h=1

γh (dh)

}
1

dk

where the digits dn = dn(x) are integers uniquely determined in terms of x .
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Introduction

Expansions of real numbers

Expansions of real numbers

Observe that for

I γn(h) = 1
h(h−1)

I γn(h) = 1
h

I γn(h) = 1

the Oppenheim expansion is reduced to the Lüroth, the Engel and the Sylvester
series respectively.
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Introduction

Generalized Oppenheim expansions

Any Oppenheim expansion satisfies the below property (Galambos (1976)):

Let (Dn)n≥1 be the sequence of Oppenheim digits, and define Bn = Dn−1; then

P (Bn+1 = hn+1 | Bn = hn, . . . ,B1 = h1) =
γn (hn + 1) hn (hn + 1)

hn+1 (hn+1 + 1)

=

∫ βn

αn

1 du

= βn − αn = F (βn)− F (αn),

where F is the distribution function of the uniform law on [0, 1], h1, . . . , hn, hn+1

are positive integers and αn := δn (hn, hn+1 + 1, qn), βn := δn (hn, hn+1, qn) for
suitable sequences of functions δn (h, h′, q) and qn := qn (h1, . . . , hn).

Remark: (Bn)n≥1 is not necessarily a Markov chain since the qn may depend
on (some of) the integers h1, . . . , hn−1.
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Introduction

Generalized Oppenheim expansions

Giuliano (2018):

Let (Dn)n≥1 be the sequence of Oppenheim digits, and define Bn = Dn−1; then

P (Bn+1 = hn+1 | Bn = hn, . . . ,B1 = h1) =
γn (hn + 1) hn (hn + 1)

hn+1 (hn+1 + 1)

=

∫ βn

αn

f du,

where f is a density on (0, 1), h1, . . . , hn, hn+1 are positive integers and
αn := δn (hn, hn+1 + 1, qn), βn := δn (hn, hn+1, qn) for suitable sequences of
functions δn (h, h′, q) and qn := qn (h1, . . . , hn).
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Introduction

Generalized Oppenheim expansions

Let (Bn)n≥1 be a sequence of integer valued random variables defined on
(Ω,A,P), where Ω = [0, 1], A is the σ-algebra of the Borel subsets of [0, 1]
and P is the Lebesgue measure on [0, 1].

Let {Fn, n ≥ 1} be a sequence of probability distribution functions with
Fn(0) = 0, for all n and moreover let ϕn : N∗ → R+ be a sequence of functions.

Furthermore, let (qn)n≥1 with qn = qn(h1, . . . , hn) be a sequence of nonnegative
numbers (i.e. possibly depending on the n integers h1, . . . , hn) such that, for
h1 ≥ 1 and hj ≥ ϕj−1(hj−1), j = 2, . . . , n we have

P
(
Bn+1 = hn+1 | Bn = hn, . . . ,B1 = h1

)
= Fn(βn)− Fn(αn),

where

αn = δn(hn, hn+1+1, qn), βn = δn(hn, hn+1, qn) with δj(h, k, q) =
ϕj(h)(1 + q)

k + ϕj(h)q
.
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Introduction

Generalized Oppenheim expansions

Let Qn = qn (B1, . . . ,Bn) and define

Rn =
Bn+1 + ϕn (Bn)Qn

ϕn (Bn) (1 + Qn)
and Sn =

n∑
i=1

Ri .

For f = 1:

I For Qn = 0: Classical Oppenheim scheme i.e. Rn =
Bn+1

ϕn(Bn)
. Different

choices of ϕn lead to ratios of functions for the Lüroth, Engel and
Sylvester random digits.

I For Qn ≥ 0: Classical and Oppenheim continued fraction expansions.

Note: Depending on the choice of ϕn and qn the dependence structure may
vary.
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Main Results

Stochastic Dominance

Theorem (Giuliano and Hadjikyriakou (2020))

For any integer n and for x ≥ 1,

E

[
Fn

(
ϕn(Bn)(1 + Qn)

xϕn(Bn)(1 + Qn) + 1

)]
≤ P(Rn > x) ≤ Fn

(
1

x

)
.

Moreover, if ϕn ≥ 1

Fn

(
1

x + 1

)
≤ P(Rn > x) ≤ Fn

(
1

x

)
.

i.e. for Un ∼ Fn for every n, Rn is stochastically dominated by U−1
n .

Notice that for Fn ≡ x (the uniform law), Rn do not have finite moments thus,
existence of means is not assumed in any of the results.
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Main Results

Stochastic Dominance

Theorem (Giuliano and Hadjikyriakou (2024))

Let ϕn ≥ 1 for every integer n. Then, for every k, every finite sequence
of integers i1, . . . , ik and every finite sequence of numbers x1, . . . , xk ≥ 1
we have

k∏
j=1

Fij

(
1

xj + 1

)
≤ P(Ri1 > x1, . . . ,Rik > xk) ≤

k∏
j=1

Fij

(
1

xj

)
.

Proposition (Giuliano and Hadjikyriakou (2024))

The random variables (Rn)n≥1 have a long-tailed distribution.
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Main Results

Asymptotic results for weighted partial sums

Theorem (Giuliano and Hadjikyriakou (2020))

Let (Rn)n≥1 be independent random variables and let the distribution
functions (Fn)n≥1 to satisfy

lim
t→0

sup
n

∣∣∣∣Fn(t)

t
− c

∣∣∣∣ = 0.

Then for every b > 2,

lim
n→∞

1

logb n

n∑
k=1

logb−2 k

k
Rk =

1

b
a.s.
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Main Results

Asymptotic results for weighted partial sums

Proposition (Giuliano and Hadjikyriakou (2020))

Let (Rn)n≥1 be as defined above such that ∀h1, . . . , hn, ϕn(hn) = cn
and qn = qn(h1, . . . , hn) = dn. Then, the sequence (Rn)n≥1 consists of
independent random variables.

Remarks:

I No assumptions on Fn were necessary.

I For Fn = U[0, 1], ϕn(hn) ≡ 1 and qn ≡ 0, Rn reduces to the Lüroth series
expansion.
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Main Results

Asymptotic results for weighted partial sums

Theorem (Giuliano and Hadjikyriakou (2020/23))

Let (Rn)n≥1 be as defined above with ϕn ≥ 1 for every n and consider
Fn for which ∃M <∞ such that ∀j = 1, . . . , n

Fj(x)− Fj(y) ≤ M(x − y) for x > y

and there exists c > 0 for which

lim
t→0

sup
n

∣∣∣∣Fn(t)

t
− c

∣∣∣∣ = 0.

Then,

1. for γ > 1,
1

nγ

n∑
k=1

Rk

k
→ 0, a.s. (2020)

2. for β > 0, p ≥ 2 and ρ(n) such that
∑∞

n=1 1/ρ(n)2 <∞

1

ρ(n) logβ n

n∑
j=1

logβ−p j

j
Rj → 0 a.s. (2023)
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Main Results

Asymptotic results for weighted partial sums

Theorem (Giuliano and Hadjikyriakou (2023))

Assume that there exists M <∞, α > 0 and L > 0 such that

(i)

Fj(x)− Fj(y) ≤ M(x − y), for x > y , ∀j = 1, 2, . . . , n

(ii)

lim
x→∞

sup
n

∣∣∣∣Fn(x)

xα
− L

∣∣∣∣ = 0

and that the sequences (an)n≥1 and (bn)n≥1 satisfy

n∑
j=1

aαj = o (bαn ) and n/bp−1
n → 0 n→∞ for some p > 1.

Then, for Rnj = Rj I
(
Rj ≤ bn

aj

)
+ bn

aj
I
(
Rj >

bn
aj

)
.

1

bp
n

n∑
j=1

aj (Rj − ERnj)
P−→ 0 n→∞
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Main Results

Asymptotic results for weighted partial sums

Theorem (Giuliano and Hadjikyriakou (2023))

Assume that the conditions of the previous Theorem are satisfied. Then,

(a) if {Dn}n≥1 is assumed to be the Lüroth sequence, and α = 1,

1

bp
n

n∑
j=1

ajDj+1
P−→ 0, n→∞

(b) if {Dn}n≥1 is assumed to be the Engel’s sequence,

1

bp
n

n∑
j=1

aj
Dj+1

Dj

P−→ 0, n→∞

(c) if {Dn}n≥1 is assumed to be the Sylvester’s sequence,

1

bp
n

n∑
j=1

aj
Dj+1

D2
j

P−→ 0, n→∞



Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions

Main Results

Definition of trimmed sums

I Since (Rn)n≥1 do not have finite expectations a strong law for the

quantity
1

an

n∑
i=1

Ri cannot be proven.

I However, weak laws are feasible.

Giuliano (2018), under some conditions for the involved distributions,

proved the convergence in probability of
1

n log n

n∑
i=1

Ri .

I Question: Can we prove a strong law of large numbers, after deleting
finitely many of the largest summands from the partial sums?
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Main Results

Definition of trimmed sums

We define the sequence of “trimmed” partial sums as

(r)Sn =
n∑

i=1

Ri −
r∑

k=1

M(k)
n

for M
(k)
n denoting the k-th maximum of R1, . . . ,Rn (in decreasing order i.e.

M
(1)
n denotes the maximum).

The sequence
(

(r)Sn

)
n≥1

is known as

I lightly trimmed sum process if r is a fixed integer.

I moderately trimmed sum process if rn →∞ and rn/n→ 0 as n→∞
I heavily trimmed sum process if rn/n→ c ∈ (0, 1) as n→∞.

Let r be a fixed integer. We are interested in studying the almost sure
convergence of

(r)Sn

n log n
.
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Main Results

Motivation

Theorem (Athreya and Athreya (2021))

With probability 1,

lim
n→∞

Sn −M
(1)
n

n log n
= 1

where Sn represents the partial sum of Lüroth random variables.

Question: Can we obtained convergence results for any trimmed generalized
Oppenheim expansion?



Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions

Main Results

A strong law for a class of generalized Oppenheim expansions and r = 1

I Consider a strictly increasing sequence Λ = (λj)j∈N tending to +∞ with
λj ≥ 1 for every j ≥ 1 and λ0 = 0.

I For u ∈ [1,+∞) let ju be the only integer such that λju−1 < u ≤ λju (i.e.
λju is the minimum element in Λ larger than or equal to u).

Theorem (Giuliano and Hadjikyriakou (2024))

Consider the random variables (Rn)n≥1 and assume that there exists a
sequence Λ such that for every x ∈ Λ and for every n,

xφn(Bn) + (x − 1)Qnφn(Bn)

is an integer. For every n, denote Tn = λjRn
. Then Tn takes values in

Λ, and the sequence (Tn)n≥1 consists of independent random variables.
Moreover the discrete density of Tn is given by the formula

Fn

(
1

λs−1

)
− Fn

(
1

λs

)
, s ∈ N∗.
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Main Results

A strong law for a class of generalized Oppenheim expansions and r = 1

I The result above is a generalization of Theorem 3 in Galambos (1974), in
which Qn = 0, Λ = N and Fn(x) = F (x) = x .

I Recall that the notation qn stands for the sequence of nonnegative
numbers such that qn(B1, . . . ,Bn) = Yn. Consider positive integers
a1, . . . , ap and assume that

φkp+j−1 = 1/aj , for k ∈ N, j = 1, . . . , p.

Define κ = L.C .M.(a1, . . . , ap) and Λ = (κn)n≥1 and assume that qn ≡ cn
where (cn)n≥1 is a sequence of positive numbers chosen from the set Λ.
Then, for any x ∈ Λ,

xφn(Bn) + (x − 1)Qnφn(Bn)

is an integer.
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Main Results

A strong law for a class of generalized Oppenheim expansions and r = 1

Theorem
Consider the random variables (Rn)n≥1 and assume that there exists a sequence
Λ such that for every x ∈ Λ and for every n,

xφn(Bn) + (x − 1)Qnφn(Bn)

is an integer. Moreover assume the following:

(i)
sup
n

(λn+1 − λn) = ` < +∞;

(ii) Fn ≡ F for all integers n and there exists a constant α > 0 such that

lim
t→0

F (t)

t
= α.

Then,

lim
n→∞

Sn −M
(1)
n

n log n
= α P − a.s..

where Sn =
n∑

i=1

Ri and M
(1)
n = max{R1 . . . ,Rn}.
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Main Results

A strong law for a class of generalized Oppenheim expansions and r = 1

Proof.
Let Tn = λjRn

and define M̃
(1)
n = max{T1 . . . ,Tn}. Then,

Tn − ` ≤ Rn ≤ Tn and M̃(1)
n − ` ≤ M(1)

n ≤ M̃(1)
n .

Thus, ∑n
k=1 Tk − M̃

(1)
n − `n

n log n
≤ Sn −M

(1)
n

n log n
≤
∑n

k=1 Tk − (M̃
(1)
n − `)

n log n
.

The desired conclusion follows by using a Mori’s result (1977) for independent
random variables which leads to the conclusion that∑n

k=1 Tk − M̃
(1)
n

n log n
→ α, n→∞.

Remark: This result covers the Lüroth case studied in Athereya and Athereya
(2021) but it can also be used to derive the respective convergence for the
Engel and Sylvester series.
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Main Results

A general strong law

Theorem (Giuliano and Hadjikyriakou (2024))

Consider the random variables (Rn)n≥1 and assume that for the involved
distribution functions (Fn)n≥1 the following condition is satisfied:

sup
n≥1

lim sup
x→0

Fn(x)

x
<∞.

Then, for every r ≥ 2 and p > 2,

lim
n→∞

M
(r)
n

n log n
= 0, P − a.s.

and

lim
n→∞

(r)Sn

(n log n)p
= 0, P − a.s.
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Main Results

A general strong law

Remarks:

1. The result is valid for any Oppenheim expansion.

2. There is no assumption for the dependence structure of (Rn)n≥1.

3. The involved distribution functions may differ.
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Main Results

A general strong law

Corollary (Giuliano and Hadjikyriakou (2024))

Consider the random variables (Rn)n≥1 and assume that for the involved
distribution functions (Fn)n≥1 the following condition is satisfied:

sup
n≥1

lim sup
x→0

Fn(x)

x
<∞.

Then, for every p > 2,

lim
n→∞

Sn −M
(1)
n

(n log n)p
= 0, P − a.s.

Proof The result follows easily by observing that for r ≥ 2

Sn −M
(1)
n

(n log n)p
=

(r)Sn

(n log n)p
+

r∑
k=2

M
(k)
n

(n log n)p

and the convergence to zero is established by applying the last two results.
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