 R ita Giuliano 1 and Milto Hadjikyriakou 2

University of Pisa, Italy¹,

University of Central Lancashire, Cyprus²

October 3, 2024

Outline

[Introduction](#page-2-0)

[Expansions of real numbers](#page-2-0) [Generalized Oppenheim expansions](#page-6-0)

[Main Results](#page-10-0)

[Stochastic Dominance](#page-10-0) [Asymptotic results for weighted partial sums](#page-12-0) [Definition of trimmed sums](#page-17-0) [Motivation](#page-19-0) [A strong law for a class of generalized Oppenheim expansions](#page-20-0) and $r = 1$ $r = 1$ [A general strong law](#page-24-0)

KORKARYKERKER POLO

[References](#page-27-0)

 $L_{\text{Expansions}}$ of real numbers

Expansions of real numbers

▶ The Lüroth series (1883): Every real number $x \in (0,1]$

$$
x = \frac{1}{d_1} + \frac{1}{(s_1) d_2} + \cdots + \frac{1}{(s_1 \cdots s_n) d_{n+1}} + \cdots = \sum_{k=1}^{\infty} \frac{1}{\left(\prod_{h=1}^{k-1} s_h\right) d_k}
$$

where $\left(d_n\right)_{n\geqslant 1}=\left(d_n(x)\right)_{n\geqslant 1}$ is a sequence of integers ≥ 2 and $s_n = d_n (d_n - 1)$, $n \ge 1$.

► The Engel series (1913): Every real number $x \in (0, 1)$:

$$
x = \frac{1}{d_1} + \frac{1}{d_1 d_2} + \cdots + \frac{1}{d_1 d_2 \cdots d_n} + \cdots = \sum_{k=1}^{\infty} \prod_{h=1}^{k} \frac{1}{d_k}
$$

KORKARYKERKER POLO

where $\left(d_n\right)_{n\geqslant 1}=\left(d_n(x)\right)_{n\geqslant 1}$ is a non-decreasing sequence of positive integers uniquely defined in terms of x.

L[Introduction](#page-2-0)

L [Expansions of real numbers](#page-2-0)

Expansions of real numbers

 \triangleright The Sylvester series (see for example Perron (1960)): Every real number $x \in (0, 1)$:

$$
x = \frac{1}{d_1} + \frac{1}{d_2} + \cdots + \frac{1}{d_n} + \cdots = \sum_{k=0}^{\infty} \frac{1}{d_k}
$$

where $\left(d_n\right)_{n\geqslant 1}=\left(d_n(x)\right)_{n\geqslant 1}$ is a sequence of positive integers uniquely defined in terms of x.

 $L_{\text{Expansions}}$ of real numbers

Expansions of real numbers

Oppenheim series (Oppenheim (1972)): Let $(\gamma_n)_{n\geqslant1}$ be a sequence of positive rational-valued functions defined on $\mathbb{N}\setminus\{1\}$ and satisfying

$$
\gamma_n(h) \geqslant \frac{1}{h(h-1)} \quad \text{ for all } n \geqslant 1.
$$

For $x \in (0, 1)$, the Oppenheim expansion of x is

$$
x = \frac{1}{d_1} + \gamma_1 (d_1) \frac{1}{d_2} + \cdots + \gamma_1 (d_1) \cdots \gamma_n (d_n) \frac{1}{d_{n+1}} + \cdots
$$

=
$$
\sum_{k=1}^{\infty} \left\{ \prod_{h=1}^{k-1} \gamma_h (d_h) \right\} \frac{1}{d_k}
$$

where the digits $d_n = d_n(x)$ are integers uniquely determined in terms of x.

KORKAR KERKER SAGA

[Introduction](#page-2-0)

L [Expansions of real numbers](#page-2-0)

Expansions of real numbers

Observe that for

$$
\triangleright \ \gamma_n(h) = \frac{1}{h(h-1)}
$$

$$
\triangleright \ \gamma_n(h) = \frac{1}{h}
$$

$$
\triangleright \ \gamma_n(h) = 1
$$

the Oppenheim expansion is reduced to the Lüroth, the Engel and the Sylvester series respectively.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Generalized Oppenheim expansions](#page-6-0)

Any Oppenheim expansion satisfies the below property (Galambos (1976)):

Let $(D_n)_{n\geq 1}$ be the sequence of Oppenheim digits, and define $B_n = D_n - 1$; then

$$
P(B_{n+1} = h_{n+1} | B_n = h_n, ..., B_1 = h_1) = \frac{\gamma_n (h_n + 1) h_n (h_n + 1)}{h_{n+1} (h_{n+1} + 1)}
$$

= $\int_{\alpha_n}^{\beta_n} 1 du$
= $\beta_n - \alpha_n = F(\beta_n) - F(\alpha_n),$

where F is the distribution function of the uniform law on [0, 1], $h_1, \ldots, h_n, h_{n+1}$ are positive integers and $\alpha_n := \delta_n (h_n, h_{n+1} + 1, q_n)$, $\beta_n := \delta_n (h_n, h_{n+1}, q_n)$ for suitable sequences of functions $\delta_n(h, h', q)$ and $q_n := q_n(h_1, \ldots, h_n)$.

Remark: $(B_n)_{n>1}$ is not necessarily a Markov chain since the q_n may depend on (some of) the integers h_1, \ldots, h_{n-1} .

[Generalized Oppenheim expansions](#page-6-0)

Giuliano (2018):

Let $(D_n)_{n>1}$ be the sequence of Oppenheim digits, and define $B_n = D_n - 1$; then

$$
P(B_{n+1} = h_{n+1} | B_n = h_n, \ldots, B_1 = h_1) = \frac{\gamma_n (h_n + 1) h_n (h_n + 1)}{h_{n+1} (h_{n+1} + 1)}
$$

=
$$
\int_{\alpha_n}^{\beta_n} f \, du,
$$

where f is a density on $(0, 1)$, $h_1, \ldots, h_n, h_{n+1}$ are positive integers and $\alpha_n := \delta_n (h_n, h_{n+1} + 1, q_n)$, $\beta_n := \delta_n (h_n, h_{n+1}, q_n)$ for suitable sequences of functions $\delta_n(h, h', q)$ and $q_n := q_n(h_1, \ldots, h_n)$.

[Generalized Oppenheim expansions](#page-6-0)

Let $(B_n)_{n\geq 1}$ be a sequence of integer valued random variables defined on (Ω, \mathcal{A}, P) , where $\Omega = [0, 1]$, \mathcal{A} is the σ -algebra of the Borel subsets of $[0, 1]$ and P is the Lebesgue measure on $[0, 1]$.

Let $\{F_n, n \geq 1\}$ be a sequence of probability distribution functions with $F_n(0) = 0$, for all n and moreover let $\varphi_n : \mathbb{N}^* \to \mathbb{R}^+$ be a sequence of functions.

Furthermore, let $(q_n)_{n\geq 1}$ with $q_n = q_n(h_1, \ldots, h_n)$ be a sequence of nonnegative numbers (i.e. possibly depending on the *n* integers h_1, \ldots, h_n) such that, for $h_1 > 1$ and $h_i > \varphi_{i-1}(h_{i-1}), i = 2, \ldots, n$ we have

$$
P(B_{n+1} = h_{n+1} | B_n = h_n, \ldots, B_1 = h_1) = F_n(\beta_n) - F_n(\alpha_n),
$$

where

$$
\alpha_n=\delta_n(h_n,h_{n+1}+1,q_n), \quad \beta_n=\delta_n(h_n,h_{n+1},q_n) \quad \text{with} \quad \delta_j(h,k,q)=\frac{\varphi_j(h)(1+q)}{k+\varphi_j(h)q}.
$$

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

[Generalized Oppenheim expansions](#page-6-0)

Let $Q_n = q_n (B_1, \ldots, B_n)$ and define

$$
R_n = \frac{B_{n+1} + \varphi_n(B_n) Q_n}{\varphi_n(B_n) (1 + Q_n)} \quad \text{and} \quad S_n = \sum_{i=1}^n R_i.
$$

For $f = 1$:

▶ For $Q_n = 0$: Classical Oppenheim scheme i.e. $R_n = \frac{B_{n+1}}{\varphi_n(B_n)}$. Different choices of φ_n lead to ratios of functions for the Lüroth, Engel and Sylvester random digits.

► For $Q_n > 0$: Classical and Oppenheim continued fraction expansions.

Note: Depending on the choice of φ_n and q_n the dependence structure may vary.

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0 +

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

L[Stochastic Dominance](#page-10-0)

Theorem (Giuliano and Hadjikyriakou (2020)) For any integer *n* and for $x > 1$. $\mathsf{E}\left[F_n\left(\frac{\varphi_n(B_n)(1+Q_n)}{\chi \varphi_n(B_n)(1+Q_n)+1}\right) \right] \leq P(R_n > x) \leq F_n\left(\frac{1}{x}\right)$ x $\big)$. Moreover, if $\varphi_n > 1$ $\mathcal{F}_n\left(\frac{1}{x+1}\right) \leq \mathcal{P}(\mathcal{R}_n > x) \leq \mathcal{F}_n\left(\frac{1}{x}\right)$ x $\big)$.

i.e. for $U_n \sim F_n$ for every n, R_n is stochastically dominated by $U_n^{-1}.$

Notice that for $F_n \equiv x$ (the uniform law), R_n do not have finite moments thus, existence of means is not assumed in any of the results.

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

L [Stochastic Dominance](#page-10-0)

Theorem (Giuliano and Hadjikyriakou (2024))

Let $\varphi_n > 1$ for every integer n. Then, for every k, every finite sequence of integers i_1, \ldots, i_k and every finite sequence of numbers $x_1, \ldots, x_k \geq 1$ we have

$$
\prod_{j=1}^k F_{i_j}\left(\frac{1}{x_j+1}\right)\leq P(R_{i_1}>x_1,\ldots,R_{i_k}>x_k)\leq \prod_{j=1}^k F_{i_j}\left(\frac{1}{x_j}\right).
$$

KORKARYKERKER POLO

Proposition (Giuliano and Hadjikyriakou (2024))

The random variables $(R_n)_{n\geq 1}$ have a long-tailed distribution.

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

[Asymptotic results for weighted partial sums](#page-12-0)

Theorem (Giuliano and Hadjikyriakou (2020))

Let $(R_n)_{n\geq 1}$ be independent random variables and let the distribution functions $(F_n)_{n\geq 1}$ to satisfy

$$
\lim_{t\to 0}\sup_n\left|\frac{F_n(t)}{t}-c\right|=0.
$$

Then for every $b > 2$,

$$
\lim_{n \to \infty} \frac{1}{\log^b n} \sum_{k=1}^n \frac{\log^{b-2} k}{k} R_k = \frac{1}{b} \quad a.s.
$$

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

 L [Asymptotic results for weighted partial sums](#page-12-0)

Proposition (Giuliano and Hadjikyriakou (2020))

Let $(R_n)_{n\geq 1}$ be as defined above such that $\forall h_1,\ldots,h_n$, $\varphi_n(h_n) = c_n$ and $q_n = q_n(h_1, \ldots, h_n) = d_n$. Then, the sequence $(R_n)_{n \geq 1}$ consists of independent random variables.

Remarks:

- \triangleright No assumptions on F_n were necessary.
- For $F_n = U[0,1], \varphi_n(h_n) \equiv 1$ and $q_n \equiv 0$, R_n reduces to the Lüroth series expansion.

[Main Results](#page-10-0)

[Asymptotic results for weighted partial sums](#page-12-0)

Theorem (Giuliano and Hadjikyriakou (2020/23))

Let $(R_n)_{n\geq 1}$ be as defined above with $\varphi_n \geq 1$ for every *n* and consider F_n for which $\exists M < \infty$ such that $\forall j = 1, \ldots, n$

$$
F_j(x) - F_j(y) \leq M(x - y) \text{ for } x > y
$$

and there exists $c > 0$ for which

$$
\lim_{t\to 0}\sup_n\left|\frac{F_n(t)}{t}-c\right|=0.
$$

Then,

1. for
$$
\gamma > 1
$$
, $\frac{1}{n^{\gamma}} \sum_{k=1}^{n} \frac{R_k}{k} \to 0$, a.s. (2020)

2. for $\beta > 0$, $p \ge 2$ and $\rho(n)$ such that $\sum_{n=1}^{\infty} 1/\rho(n)^2 < \infty$

$$
\frac{1}{\rho(n)\log^{\beta} n}\sum_{j=1}^{n}\frac{\log^{\beta-p}j}{j}R_j\to 0 \quad \text{a.s.} \quad (2023)
$$

K ロ ▶ K 何 ▶ K ヨ ▶ K ヨ ▶ ÷. $2Q$

[Main Results](#page-10-0)

[Asymptotic results for weighted partial sums](#page-12-0)

Theorem (Giuliano and Hadjikyriakou (2023))

Assume that there exists $M < \infty$, $\alpha > 0$ and $L > 0$ such that

(i)

$$
F_j(x) - F_j(y) \le M(x - y), \quad \text{for} \quad x > y, \quad \forall j = 1, 2, \ldots, n
$$

(ii)

$$
\lim_{x \to \infty} \sup_n \left| \frac{F_n(x)}{x^{\alpha}} - L \right| = 0
$$

and that the sequences $\left(a_n \right)_{n \geq 1}$ and $\left(b_n \right)_{n \geq 1}$ satisfy

$$
\sum_{j=1}^n a_j^{\alpha} = o(b_n^{\alpha}) \quad \text{and} \quad n/b_n^{p-1} \to 0 \quad n \to \infty \quad \text{for some} \quad p > 1.
$$

Then, for $R_{nj} = R_j I\left(R_j \leq \frac{b_n}{a_j}\right) + \frac{b_n}{a_j} I\left(R_j > \frac{b_n}{a_j}\right)$. 1 b_n^p $\sum_{n=1}^{\infty}$ $j=1$ $a_j\left(R_j-E R_{nj}\right)\stackrel{P}{\to} 0\quad n\to\infty$

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

[Asymptotic results for weighted partial sums](#page-12-0)

Theorem (Giuliano and Hadjikyriakou (2023))

Assume that the conditions of the previous Theorem are satisfied. Then, (a) if $\left\{ D_{n}\right\} _{n\geq 1}$ is assumed to be the Lüroth sequence, and $\alpha =1,$

$$
\frac{1}{b_n^p}\sum_{j=1}^n a_j D_{j+1} \xrightarrow{P} 0, \quad n \to \infty
$$

(b) if ${D_n}_{n\geq 1}$ is assumed to be the Engel's sequence,

$$
\frac{1}{b_n^p}\sum_{j=1}^n a_j \frac{D_{j+1}}{D_j} \xrightarrow{P} 0, \quad n \to \infty
$$

(c) if ${D_n}_{n\geq 1}$ is assumed to be the Sylvester's sequence,

$$
\frac{1}{b_n^{\rho}}\sum_{j=1}^n a_j \frac{D_{j+1}}{D_j^2} \xrightarrow{\rho} 0, \quad n \to \infty
$$

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

 L [Definition of trimmed sums](#page-17-0)

► Since
$$
(R_n)_{n\geq 1}
$$
 do not have finite expectations a strong law for the quantity $\frac{1}{a_n} \sum_{i=1}^{n} R_i$ cannot be proven.

However, weak laws are feasible.

Giuliano (2018), under some conditions for the involved distributions, proved the convergence in probability of $\frac{1}{n \log n}$ $\sum_{n=1}^{n}$ $i=1$ Ri.

Question: Can we prove a strong law of large numbers, after deleting finitely many of the largest summands from the partial sums?

KORKAR KERKER SAGA

[Main Results](#page-10-0)

 \Box [Definition of trimmed sums](#page-17-0)

We define the sequence of "trimmed" partial sums as

$$
^{(r)}S_n=\sum_{i=1}^n R_i-\sum_{k=1}^r M_n^{(k)}
$$

for $M_n^{(k)}$ denoting the k-th maximum of R_1,\ldots,R_n (in decreasing order i.e. $M_n^{(1)}$ denotes the maximum).

The sequence $\binom{(r)}{S_n}_{n\geq 1}$ is known as

- \blacktriangleright lightly trimmed sum process if r is a fixed integer.
- **IF** moderately trimmed sum process if $r_n \to \infty$ and $r_n/n \to 0$ as $n \to \infty$
- **►** heavily trimmed sum process if $r_n/n \to c \in (0,1)$ as $n \to \infty$.

Let r be a fixed integer. We are interested in studying the almost sure convergence of

$$
\frac{\binom{r}{r}}{n\log n}.
$$

KORKAR KERKER SAGA

[Main Results](#page-10-0)

L**[Motivation](#page-19-0)**

Theorem (Athreya and Athreya (2021)) With probability 1, $\lim_{n\to\infty}\frac{S_n-M_n^{(1)}}{n\log n}$ $\frac{n}{n \log n} = 1$ where S_n represents the partial sum of Lüroth random variables.

Question: Can we obtained convergence results for any trimmed generalized Oppenheim expansion?

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

[Main Results](#page-10-0)

 \Box [A strong law for a class of generalized Oppenheim expansions and](#page-20-0) $r = 1$

- \triangleright Consider a strictly increasing sequence $Λ = (λ_i)_{i∈N}$ tending to $+\infty$ with $\lambda_i > 1$ for every $i > 1$ and $\lambda_0 = 0$.
- ► For $u \in [1, +\infty)$ let j_u be the only integer such that $\lambda_{j_u-1} < u \leq \lambda_{j_u}$ (i.e. λ_{j_u} is the minimum element in Λ larger than or equal to u).

Theorem (Giuliano and Hadjikyriakou (2024))

Consider the random variables $(R_n)_{n\geq 1}$ and assume that there exists a sequence Λ such that for every $x \in \Lambda$ and for every n,

$$
x\phi_n(B_n) + (x-1)Q_n\phi_n(B_n)
$$

is an integer. For every n , denote ${\cal T}_n=\lambda_{j_{R_n}}.$ Then ${\cal T}_n$ takes values in $Λ$, and the sequence $(T_n)_{n>1}$ consists of independent random variables. Moreover the discrete density of T_n is given by the formula

$$
F_n\left(\frac{1}{\lambda_{s-1}}\right)-F_n\left(\frac{1}{\lambda_s}\right), \quad s\in\mathbb{N}^*.
$$

KORKAR KERKER ST VOOR

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

 \Box [A strong law for a class of generalized Oppenheim expansions and](#page-20-0) $r = 1$

- \triangleright The result above is a generalization of Theorem 3 in Galambos (1974), in which $Q_n = 0$, $\Lambda = \mathbb{N}$ and $F_n(x) = F(x) = x$.
- Recall that the notation q_n stands for the sequence of nonnegative numbers such that $q_n(B_1, \ldots, B_n) = Y_n$. Consider positive integers a_1, \ldots, a_n and assume that

$$
\phi_{kp+j-1} = 1/a_j
$$
, for $k \in \mathbb{N}$, $j = 1, ..., p$.

Define $\kappa = L.C.M.(a_1, \ldots, a_p)$ and $\Lambda = (\kappa n)_{n>1}$ and assume that $q_n \equiv c_n$ where $(c_n)_{n>1}$ is a sequence of positive numbers chosen from the set Λ . Then, for any $x \in \Lambda$.

$$
x\phi_n(B_n) + (x-1)Q_n\phi_n(B_n)
$$

KORKARYKERKER POLO

is an integer.

[Main Results](#page-10-0)

 $\overline{}$ [A strong law for a class of generalized Oppenheim expansions and](#page-20-0) $r = 1$

Theorem

Consider the random variables $(R_n)_{n\geq 1}$ and assume that there exists a sequence $Λ$ such that for every $x ∈ Λ$ and for every n,

 $x\phi_n(B_n) + (x-1)Q_n\phi_n(B_n)$

is an integer. Moreover assume the following:

(i)

$$
\sup_n(\lambda_{n+1}-\lambda_n)=\ell<+\infty;
$$

(ii) $F_n \equiv F$ for all integers n and there exists a constant $\alpha > 0$ such that

$$
\lim_{t\to 0}\frac{F(t)}{t}=\alpha.
$$

Then,

$$
\lim_{n\to\infty}\frac{S_n-M_n^{(1)}}{n\log n}=\alpha\qquad P-\text{a.s.}.
$$

where
$$
S_n = \sum_{i=1}^n R_i
$$
 and $M_n^{(1)} = \max\{R_1 \dots, R_n\}.$

[Main Results](#page-10-0)

 \Box [A strong law for a class of generalized Oppenheim expansions and](#page-20-0) $r = 1$

Proof.
\nLet
$$
T_n = \lambda_{j_{R_n}}
$$
 and define $\tilde{M}_n^{(1)} = \max\{T_1 \dots, T_n\}$. Then,
\n $T_n - \ell \le R_n \le T_n$ and $\tilde{M}_n^{(1)} - \ell \le M_n^{(1)} \le \tilde{M}_n^{(1)}$.

Thus,

$$
\frac{\sum_{k=1}^n T_k - \tilde{M}_n^{(1)} - \ell n}{n \log n} \leq \frac{S_n - M_n^{(1)}}{n \log n} \leq \frac{\sum_{k=1}^n T_k - (\tilde{M}_n^{(1)} - \ell)}{n \log n}.
$$

The desired conclusion follows by using a Mori's result (1977) for independent random variables which leads to the conclusion that

$$
\frac{\sum_{k=1}^{n} T_k - \tilde{M}_n^{(1)}}{n \log n} \to \alpha, \quad n \to \infty.
$$

П

KORK ERKER ADAM ADA

Remark: This result covers the Lüroth case studied in Athereya and Athereya (2021) but it can also be used to derive the respective convergence for the Engel and Sylvester series.

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

 L_{A} general strong law

Theorem (Giuliano and Hadjikyriakou (2024))

Consider the random variables $(R_n)_{n\geq 1}$ and assume that for the involved distribution functions $(F_n)_{n\geq 1}$ the following condition is satisfied:

> sup lim sup
』≥1 ×→0 $F_n(x)$ $\frac{d(x)}{x} < \infty$.

Then, for every $r > 2$ and $p > 2$,

$$
\lim_{n\to\infty}\frac{M_n^{(r)}}{n\log n}=0,\qquad P-\text{a.s.}
$$

and

$$
\lim_{n\to\infty}\frac{(r)S_n}{(n\log n)^p}=0,\qquad P-\text{a.s.}
$$

[Main Results](#page-10-0)

 L_A general strong law

Remarks:

- 1. The result is valid for any Oppenheim expansion.
- 2. There is no assumption for the dependence structure of $(R_n)_{n>1}$.

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

3. The involved distribution functions may differ.

[Strong laws of large numbers for lightly trimmed sums of generalized Oppenheim expansions](#page-0-0)

 L_{A} general strong law

Corollary (Giuliano and Hadjikyriakou (2024))

Consider the random variables $(R_n)_{n\geq 1}$ and assume that for the involved distribution functions $(F_n)_{n\geq 1}$ the following condition is satisfied:

$$
\sup_{n\geq 1}\limsup_{x\to 0}\frac{F_n(x)}{x}<\infty.
$$

Then, for every $p > 2$,

$$
\lim_{n\to\infty}\frac{S_n-M_n^{(1)}}{(n\log n)^p}=0,\qquad P-\text{a.s.}
$$

Proof The result follows easily by observing that for $r > 2$

$$
\frac{S_n - M_n^{(1)}}{(n \log n)^p} = \frac{^{(r)}S_n}{(n \log n)^p} + \sum_{k=2}^r \frac{M_n^{(k)}}{(n \log n)^p}
$$

and the convergence to zero is established by applying the last two results.

KORKAR KERKER SAGA

L[References](#page-27-0)

ATHREYA J. S. AND ATHREYA K. B. (2021). Extrema of Luroth Digits and a Zeta Function Limit Relation, Integers, 21, A96.

GALAMBOS, J., (1974). Further ergodic results on the Oppenheim series, Quart. J. Math. 25, 1, 135–141.

- GIULIANO, R., (2018). Convergence results for Oppenheim expansions, Monatsh. Math, 187,3, 509–530.
- 量 GIULIANO, R., AND HADJIKYRIAKOU, M. (2020). On exact laws of large numbers for Oppenheim expansions with infinite mean, Journal of Theoretical Probability, 34, 1579–1606.

- GIULIANO, R., HADJIKYRIAKOU, M., (2023), New asymptotic results for generalized Oppenheim expansions. Acta Math. Hungar. 169, 359–381.
- 譶
- T. MORI, (1977). Stability for sums of i.i.d. random variables when extreme terms are excluded, Z.Wahrscheinlichkeitstheorie und Verw. Gebiete 40(2), 159–167.

Thank you for your attention

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →