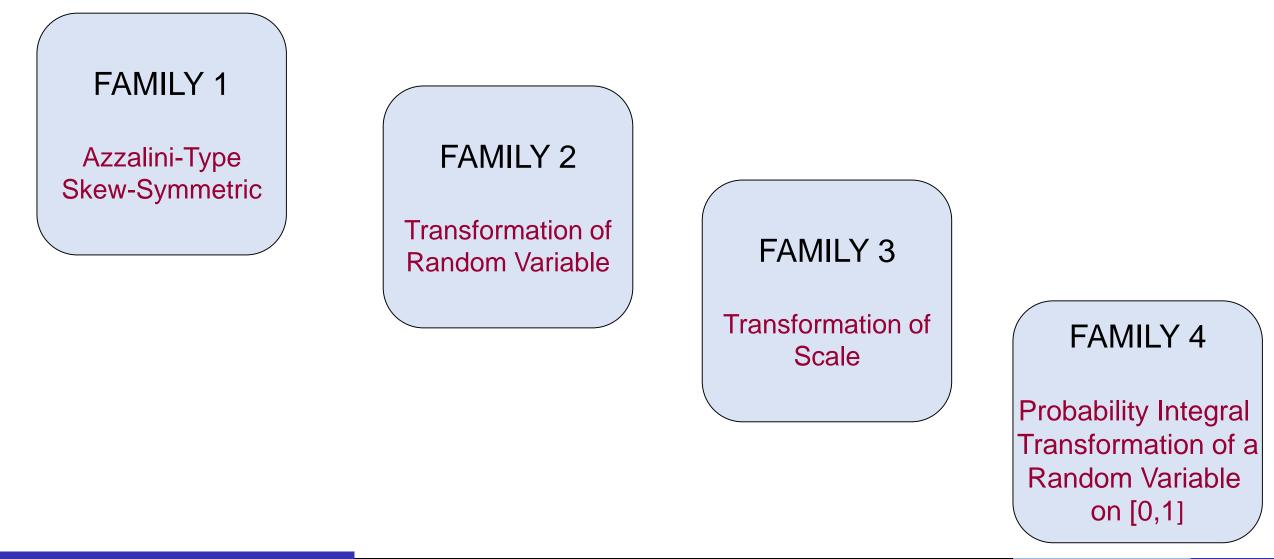
Generating families of continuous univariate distributions

Markos V. Koutras

Department of Statistics and Insurance Science School of Finance and Statistics University of Piraeus, Greece

> International Conference on Combinatorial Methods and Probability Models A Conference in Memory of Professor Charalambos A. Charalambides

- Koutras, M. V. and Dafnis, S. (2024). A new family of continuous univariate distributions. Under revision in *Methodology and Computing in Applied Probability.*
- Koutras, M. V. and Dafnis, S. (2024). On the generation of continuous univariate distributions. Submitted for publication.



International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 3 /62

FAMILY 1

Azzalini-Type Skew-Symmetric Define the density of X_A to be

 $f_A(x) = 2W(x)f(x)$

where f is a pdf and $W(\cdot)$ a function such that W(x) + W(-x) = 1

The most familiar special cases take $W(x) = F(\alpha x)$ to be the cdf of a (scaled) symmetric distribution

Azzalini, 1985, Scand. J. Stat., Azzalini with Capitanio, 2014, book

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 4 /62

FAMILY 2

Transformation of Random Variable

Let $W: R \to R$ be an invertible increasing function. If $X \sim f$, then define $X_T = W(X)$. The density of the distribution of X_T is

$$f_T(x) = \frac{f(W^{-1}(x))}{W'(W^{-1}(x))}$$

Jones & Pewsey, 2009, Biometrika

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 5 /62

FAMILY 3 Transformation of Scale The density of the distribution of X_s is just $f_S(x)=2f(W^{-1}(x))$

which is a density if

W(x) - W(-x) = x

Jones, 2014, Statist. Sinica

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 6 /62

FAMILY 4

Probability Integral Transformation of a Random Variable on [0,1] Let g be the density of a random variable U in (0,1). Then define $X_U = F^{-1}(U)$ where F' = f. The density of the distribution of X_U is

$$f_U(x)=f(x)g(F(x))$$

It is **one of the easiest things in statistics** to invent new univariate distributions; after all, any non-negative integrable function is the core of a density function. The ongoing challenge is to extract from the overwhelming plethora of possibilities those relatively few with the **best and most appropriate properties that are of real potential value in practical applications.**

Jones, M. C. (2015). On families of distributions with shape parameters. International Statistical Review 83, 2, 175-192.

Motivation

For many classical continuous univariate distributions, there exists a monotone transformation $g(\cdot)$, of their cumulative density function (cdf) F(x), so that

$$g(F(x)) = h(x; \boldsymbol{\theta}),$$

where

- g(x) does not involve any of the distributions parameters.
- $h(x; \theta)$ contains the parameters of the distribution.

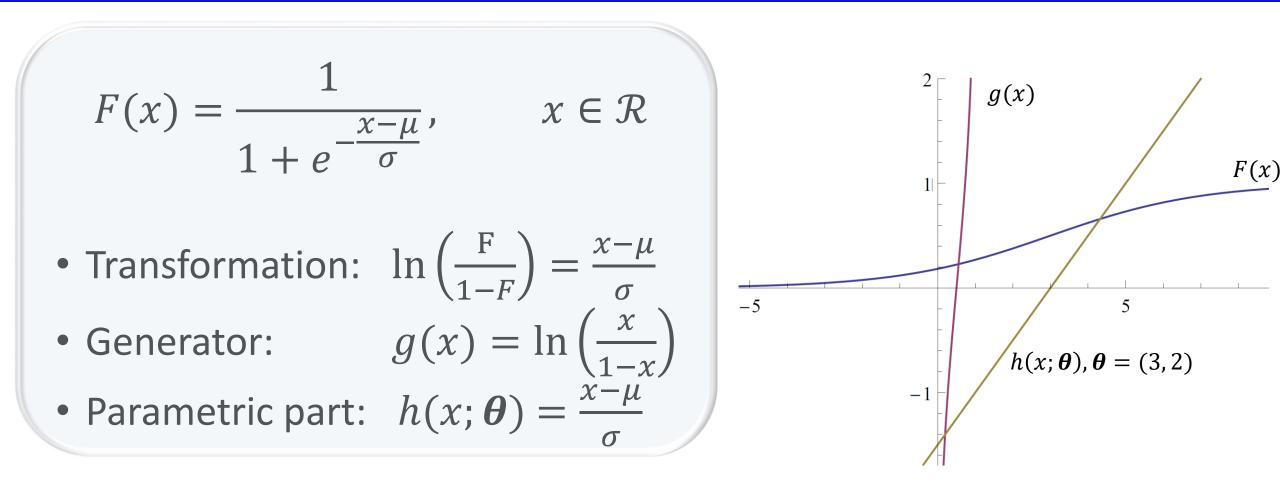
Well known distributions

$g(F(x)) = h(x; \boldsymbol{\theta})$

Distribution	F(x)	θ	Transformation	g(x)	$h(x; \boldsymbol{\theta})$
Exponential	$1 - e^{-\lambda x}$	λ	$-\ln(1-F) = \lambda x$	$-\ln(1-x)$	λx
Weibull	$1 - e^{-\lambda x^{\alpha}}$	(α, λ)	$-\ln(1-F) = \lambda x^{\alpha}$	$-\ln(1-x)$	λx^{lpha}
Pareto known α	$1 - (\frac{\lambda}{x+\lambda})^{\alpha}$	λ	$\left(\frac{1}{1-F}\right)^{\frac{1}{\alpha}} = \frac{x}{\lambda} + 1$	$\left(\frac{1}{1-x}\right)^{\frac{1}{\alpha}}$	$\frac{x}{\lambda} + 1$
Gompertz	$1 - e^{-\alpha(e^{\lambda x} - 1)}$	(α, λ)	$-\ln(1-F) = \alpha(e^{\lambda x} - 1)$	$-\ln(1-x)$	$\alpha(e^{\lambda x}-1)$
Dagum known <i>p</i>	$\left(1+\left(\frac{x}{\lambda}\right)^{-\alpha}\right)^{-p}$	(α, λ)	$(F^{-1/p} - 1)^{-1} = (\frac{x}{\lambda})^{\alpha}$	$\frac{1}{-1+x^{-1/p}}$	$(\frac{x}{\lambda})^{\alpha}$
Exponential-logarithmic known p	$1 - \frac{\ln(1 - (1 - p)e^{-\lambda x})}{\ln p}$	λ	$-\ln(\frac{1-p^{1-F}}{1-p}) = \lambda x$	$-\ln(\frac{1-p^{1-x}}{1-p})$	λx
Log-logistic	$\frac{x^{\alpha}}{\lambda^{\alpha}+x^{\alpha}}$	α	$\ln(\frac{F}{1-F}) = \alpha \ln(\frac{x}{\lambda})$	$\ln(\frac{x}{1-x})$	$\alpha \ln(\frac{x}{\lambda})$
Burr known α	$1 - \left(\frac{1}{1 + (\frac{x}{\lambda})^{\beta}}\right)^{\alpha}$	β, λ	$\left(\frac{1}{1-F}\right)^{\frac{1}{\alpha}} = \left(\frac{x}{\lambda}\right)^{\beta} + 1$	$\left(\frac{1}{1-x}\right)^{\frac{1}{\alpha}}$	$(\frac{x}{\lambda})^{\beta} + 1$

Generating families of continuous univariate distributions

Example: Logistic Distribution



Generating families of continuous univariate distributions September 2024 11 /62

 $g(F(x)) = h(x; \theta)$

 $g(F(x)) = h(x; \theta)$

We shall say that a distribution with support $(-\infty, \infty)$ and cdf F belongs to the class $D_g(h)$ (notation: $F \in D_g(h)$) if $F(x) = g^{-1}(h(x))$

where

C1. $g: (0,1) \rightarrow \mathcal{R}$ is strictly increasing.

C2. $h: (-\infty, \infty) \rightarrow \mathcal{R}$ is increasing.

C3. *g*, *h* differentiable.

C4.
$$\lim_{x \to 1^{-}} g(x) = \infty \text{ and } \lim_{x \to 0^{+}} g(x) = l \ (l \in \mathcal{R} \text{ or } l = -\infty).$$

C5.
$$\lim_{x \to \infty} h(x) = \infty \text{ and } \lim_{x \to -\infty} h(x) = l.$$

September 2024 12 /62

Aging Properties of $D_g(h)$ – Proposition 1a

Let $F \in D_g(h)$, $\Delta \subseteq \mathcal{R}$ and $Q(\cdot)$ the function defined by

$$Q(x) = g'(x)(1-x), 0 < x < 1.$$

.... best and most appropriate properties that are of real potential value in practical applications

- h' is decreasing in Δ (h concave) and
- Q is increasing in $F(\Delta) \subseteq (0, 1)$

then F has a decreasing failure rate ($F \in DFR$) in Δ .

lf

The failure rate of $D_g(h)$ – sketch of Proposition's proof

Let
$$F \in D_g(h)$$
, $\Delta \subseteq \mathcal{R}$ and $Q(\cdot)$ the function defined by

$$Q(x) = g'(x)(1-x), 0 < x < 1.$$

- h' is decreasing in Δ (h concave) and
- Q is increasing in $F(\Delta) \subseteq (0, 1)$

then F has a decreasing failure rate ($F \in DFR$) in Δ .

$$r(x) = \frac{h'(x)}{Q/(F/(x))}$$

lf

Aging Properties of $D_g(h)$ – Proposition 1b

Let $\Delta \subseteq \mathcal{R}$. If

• h' is decreasing in Δ (h concave) and

• *Q* is increasing in $F(\Delta) \subseteq (0, 1)$ then $F \in D_q(h)$ has a decreasing failure rate ($F \in DFR$) in Δ .

Let $\Delta \subseteq \mathcal{R}$. If

• h' is increasing in Δ (h convex) and

• Q is decreasing in $F(\Delta) \subseteq (0, 1)$ then $F \in D_g(h)$ has an increasing failure rate ($F \in IFR$) in Δ .

Aging Properties of $D_g(h)$ – Proposition 1c

Let $\Delta \subseteq \mathcal{R}$ and assume that h' is constant in Δ (i.e. the parametric part h is linear in x in Δ).

- If Q increasing in $F(\Delta) \subseteq (0, 1)$, then $F \in D_g(h)$ is DFR in Δ .
- If Q decreasing in $F(\Delta) \subseteq (0, 1)$, then $F \in D_g(h)$ is *IFR* in Δ .
- If Q constant in $F(\Delta) \subseteq (0, 1)$, then $F \in D_g(h)$ has a constant failure rate in Δ .

$$r(x) = \frac{h'(x)}{Q(F(x))} = \frac{\text{constant}}{Q(F(x))}$$

For many classical distributions we have

$$h(x) = cx + d, \quad c > 0.$$

Therefore, the study for the aging properties of the classical distributions can be conferred from the monotonicity properties of the function

$$Q(x) = g'(x)(1-x), 0 < x < 1.$$

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 17 /62

	Distribution	F(x)	$\boldsymbol{g}(\boldsymbol{x})$	$h(x; \theta)$
1	Logistic	$\frac{1}{1+e^{-\frac{x-\mu}{\sigma}}}$	$ln\left(\frac{x}{1-x}\right)$	$\frac{x-\mu}{\sigma}$
2	Gumbel	$\exp(-e^{-\frac{x-\mu}{\sigma}})$	-ln(-lnx)	$\frac{x-\mu}{\sigma}$
3	Cauchy	$\frac{1}{2} + \frac{1}{\pi} \arctan\left(-\frac{x-\mu}{\sigma}\right)$	$\tan\left(\pi x - \frac{\pi}{2}\right)$	$\frac{x-\mu}{\sigma}$

$$Q(x) = g'(x)(1-x)$$

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 18 /62

Proposition 1c: Application for the Logistic Distribution

$$g(x) = \ln\left(\frac{x}{1-x}\right), \qquad h(x; \theta) = \frac{x-\mu}{\sigma}$$

$$Q(x) = g'(x)(1-x) = \frac{1}{x}$$

$$Q'(x) = -\frac{1}{x^2} < 0$$

$$Q \text{ is decreasing in } F((-\infty, \infty)) = (0,1)$$
 $\Rightarrow F \text{ is } IFR \text{ in } (-\infty, \infty)$

Let $\Delta \subseteq \mathcal{R}$ and assume that h' is constant in Δ .

- If *Q* increasing in $F(\Delta) \subseteq (0, 1)$, then $F \in IFR$ in Δ .
- If *Q* decreasing in $F(\Delta) \subseteq (0, 1)$, then $F \in IFR$ in Δ .
- If Q constant in $F(\Delta) \subseteq (0, 1)$, then F has a constant failure rate in Δ .

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 19 /62

Probability Bounds for $D_g(h)$

Proposition 3. If $F \in D_g(h)$ and c is a positive lower bound for the function g', i.e.

$$g'(x) \ge c, \quad \forall x \in (0,1)$$

then

$$P(x_1 < X < x_2) \le \frac{h(x_2; \boldsymbol{\theta}) - h(x_1; \boldsymbol{\theta})}{c},$$

for every x_1 , x_2 with $x_1 < x_2$.

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions

September 2024 20 /62

Unimodality of $D_g(h)$

Proposition 2. Let $F \in D_g(h)$ and $w(\cdot)$ the function defined in $\Delta \subseteq \mathcal{R}$ by the formula

$$w(x) = \frac{1}{g'(x)}.$$

.... best and most appropriate properties that are of real potential value in practical applications

September 2024 21 /62

lf

- w is concave in $F(\Delta)$
- h' is logconcave in Δ
- both h and g are concave functions or both h and g are convex functions in Δ and $F(\Delta) \subseteq (0, 1)$, respectively, then $F \in D_g(h)$ is unimodal and IFR in Δ .

A gallery for h functions to generate distributions in $D_g(h)$

▶ Linear
$$h(x) = \alpha x, \ \alpha > 0$$
▶ Power
$$h(x) = \alpha x^{b}, \ \alpha > 0 \text{ and } b \ge 1 \text{ odd}$$
Exponential
$$h(x) = ae^{bx} \alpha, b > 0$$
▶ Exponential - Logarithmic
$$h(x) = ln(ln(a + be^{cx})), b, c > 0 \text{ and } a \ge 1$$
▶ Power - Logarithmic
$$h(x) = a ln(1 + bx^{c}) \ a > 0, b > 0 \text{ and } c \ge 1 \text{ odd}$$
Power - 1 odd

Generating families of continuous univariate distributions

September 2024 22 /62

Generation of new distributions in $D_g(h)$:linear combinations

Proposition 4. Let

 $F_1 \in D_a(h_1), \qquad F_2 \in D_a(h_2)$ and introduce the function h_3 defined by $h_3 = b_1 h_1 + b_2 h_2$ with b_1 , $b_2 > 0$. Then $F_3 = g^{-1} \circ h_3 \in D_a(h_3)$ if $\lim_{x \to 0^+} g(x) = l \in \mathcal{R} \text{ and } b_1 + b_2 = 1 \text{ or }$ $ightarrow \lim_{x \to 0^+} g(x) = -\infty \text{ or }$ $\geq \lim_{x \to 0^+} g(x) = 0.$

Generation of new distributions in $D_q(h)$: multiplication

Proposition 5. Let

$$F_1 \in D_g(h_1), \quad F_2 \in D_g(h_2)$$

and introduce the function h_3 defined by
 $h_3 = h_1 h_2.$
If $\lim_{x \to 0^+} g(x) = l \in \mathcal{R}$ and $l = 0$ or $l = 1$, then
 $F_3 = g^{-1} \circ h_3 \in D_g(h_3).$

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions

September 2024 24 /62

Generation of new distributions in $D_g(h)$: composition

Proposition 6. Let

$$F_1 \in D_g(h_1), \quad F_2 \in D_g(h_2)$$

and introduce the function h_3 defined by
 $h_3 = h_1 \circ h_2.$
If
 $\lim_{x \to 0^+} g(x) = l \in \mathcal{R} \text{ and } h_1(l) = l,$
then
 $F_3 = g^{-1} \circ h_3 \in D_g(h_3).$

International Conference on Combinatorial Methods and Probability Models

ar

lf

Generating families of continuous univariate distributions

September 2024 25 /62

Proposition 4.1. Let $F \in D_g^+(h)$ and $g_0 : (0,1) \to \mathbb{R}$ a strictly increasing and differentiable function such that

 $\lim_{x\to 0^+} g_0(x) = 0$ and $\lim_{x\to 1^-} g_0(x) = 1$.

Then, the function $g_1 = g \circ g_0$ *is a valid generator leading to the cdf*

 $F^* = g_1^{-1} \circ h \in D^+_{g_1}(h).$

Generation of new distributions in $D_g(h)$:transforming the generator

($g_0(x)$	$g_0^{-1}(x)$	Parameters	Comments
	1	$(-ln(1-x(1-e^{-1})))^{\frac{1}{\alpha}}$	$\frac{e^{-x^{\alpha}}-1}{e^{-1}-1}$	$\alpha > 0$	Khalil et al. (2021)
	2	$\frac{\frac{(1-\theta)x}{x-\theta}}{\ln((\theta-1)x+1)}$	$\frac{\theta x}{\theta - 1 + x}$	$\theta > 0$	Ahmad et al. (2022)
	3	$\frac{ln((\theta-1)x+1)}{ln\theta}$	$\frac{\theta^{x}-1}{\theta-1}$	$0 < \theta \neq 1$	Mahdavi and Kundu (2017)
	4	$\left(1 - \frac{\theta}{\ln(1 - x^{\frac{1}{\alpha}})}\right)^{-1}$	$(1 - e^{-\theta \frac{x}{1-x}})^{\alpha}$	$\theta > 0, \alpha > 0$	Barati and Rashidi (2022)
	5	x^{α}	$\chi^{\frac{1}{\alpha}}$	$\alpha > 0$	Special case of the $Beta(\alpha,\beta)$ distribution with $\beta = 1$
	6	$1 - (1 - x)^{\beta}$	$1 - (1 - x)^{\frac{1}{\beta}}$	$\beta > 0$	Special case of the $Beta(\alpha, \beta)$ distribution with $\alpha = 1$
	7	$1 - (1 - x^{\alpha})^{\beta}$	$(1 - (1 - x)^{\frac{1}{\beta}})^{\frac{1}{\alpha}}$	$\alpha, \beta > 0$	Kumaraswamy Distribution, see e.g. Jones (2009)
	8	$\frac{1}{1-lnx}$	$e^{1-\frac{1}{x}}$	_	

Generating families of continuous univariate distributions September 2024 27 /62

Proposition 5.4. Let $F \in D_g^+(h)$, $g_0 : (0,1) \to \mathbb{R}$ a transformation function and $F^* \in D_{g,g_0}^+(h)$ the transformed D_g^+ – family. Let also s(x) denote the function

$$s(x) = \frac{g_0'(x)(1-x)}{1-g_0(x)} = -(1-x)(\ln(1-g_0(x)))', \ 0 < x < 1.$$

a. If F is IFR on $\Delta \subseteq (0, \infty)$ and s(x) is decreasing on $F(\Delta)$ then F^* is IFR on Δ .

b. If F is DFR on $\Delta \subseteq (0, \infty)$ and s(x) is increasing on $F(\Delta)$, then F^* is DFR on Δ .

Generating families of continuous univariate distributions September 2024 28 /62

Proposition 5.8. Let $F \in D_g^+(h)$, $g_0 : (0, 1) \to \mathbb{R}$ a transformation function with

 $\lim_{x\to 1^-}g_0'(x)\neq 0$

and $F^* \in D^+_{g,g_0}(h)$ the corresponding transformed D^+_g – family.

a. If F is heavy tailed, then F^* is heavy tailed.

b. If F is not heavy tailed, then F^* is not heavy tailed.

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions September 2024 29 /62

Further research

- Additional closure properties (when combining several parametric parts)
- Study of fitting performance in
 - experimental data (hydration heat, antibacterial activity)
 - collections of big data (social networking data)

A wide family of continuous univariate distributions and applications

Thank you for your attention!

International Conference on Combinatorial Methods and Probability Models

Generating families of continuous univariate distributions Ser

September 2024 31 /62