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Generating new families of distributions from existing ones
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Generating new families of distributions from existing ones

~

FAMILY 1

Azzalini-Type

~

Skew-Symmetric

"

/

Define the density of X, to be

fa(x) = 2W (x)f (x)

where f is a pdf and W (-) a function such that
Wix) +W(—x) =1

The most familiar special cases take W(x) = F(ax)
to be the cdf of a (scaled) symmetric distribution

Azzalini, 1985, Scand. J. Stat., Azzalini with Capitanio, 2014, book
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Generating new families of distributions from existing ones

a N
EAMILY 2 Let W:R — R be an invertible increasing function.
If X ~ f, then define X, = W(X). The density of
Transformation of .
Random Variable the distribution of XT IS
\ /
fr) = L)
! w'(W-1(x))

Jones & Pewsey, 2009, Biometrika
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Generating new families of distributions from existing ones

~

FAMILY 3

N

Transformation of

\

Scale

/

The density of the distribution of X is just

fs(x)=2f(W1(x))

which is a density if
Wx)—W(—x) =x

Jones, 2014, Statist. Sinica
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Generating new families of distributions from existing ones

4 FAMILY 4 N

Let g be the density of a random variable U in
Probability Integral (0,1). Then define XU = F1 (U) where F' = f

Transformationofa| ~ The density of the distribution of X, is
Random Variable

o1l fu (X)=f () g (F())
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An easy task, but .....

It is one of the easiest things in statistics to invent new univariate
distributions; after all, any non-negative integrable function is the
core of a density function. The ongoing challenge is to extract
from the overwhelming plethora of possibilities those relatively
few with the best and most appropriate properties that are of
real potential value in practical applications.

Jones, M. C. (2015). On families of distributions with shape
parameters. International Statistical Review 83, 2, 175-192.
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Motivation

For many classical continuous univariate distributions, there exists
a monotone transformation g(:), of their cumulative density
function (cdf) F(x), so that

g(F(x)) = h(x;0),
where

* g(x) does not involve any of the distributions parameters.
* h(x; @) contains the parameters of the distribution.
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Well known distributions

g(F(x)) = h(x; 0)

Distribution F(x) 0 Transformation g(x) h(x.8)
Exponential | —e A —In(1 = F) = Ax —In(1 — x) AX
Weibull | —e ™ (ar, 1) —In(1 = F) = Ax® —1In(1 — x) Ax“
Pareto known a | — (?{E)‘* 1 () = £ 41 ()@ S
Gompertz l—e @D | (@A) | -In(l-F)=ate"-1) | —In(1-x) | a(e™ -1
Dagum known p 1+ J@n | ¢r-n'=@r | 4% | @r
. - . . In(1—(1—p)e™ ) 1-p!=t A i_pl—_r i
Exponential-logarithmic known p | 1 — ™ A — In( i ) = Ax —In( i ) AX
Log-logistic = a ln(&) = aIn(%) In( ) aIn(%)
Burr known «a | - (ﬁ)”’ B, A () = BF +1 (L) (£) + 1
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Example: Logistic Distribution

1 2
F(x) — X—[1 ’ X€ER
1+e o A F&)
 Transformation: ln( d ) —F - l
* Generator: (x) — ln( ) ] h(x;0),0 = (3,2)
* Parametric part: h(x; 0) = h
/_
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The New Family: Definition

We shall say that a distribution with support (—oo, ) and cdf F belongs to the
class D, (h) (notation: F € D, (h)) if

F(x) = g~ (h(x))
where
Cl. g: (0,1) —» R is strictly increasing.
C2. h: (—o,0) — R isincreasing.
C3. g, h differentiable.
C4. lim g(x) = o and llm g(x) =1

x— 1~
C5. lim h(x) = o and hm h(x) = L.
X— 00 X—>—00
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Aging Properties of D, (h) — Proposition 1a

Let F € Dy(h), A € R and Q(-) the function defined by
Q(x) — g,(x)(l T X), O < x< 1 ... best and most appropriate

properties that are of real
|f potential value in practical
applications

* h' is decreasing in A (h concave) and
* Q isincreasingin F(A) € (0,1)
then F has a decreasing failure rate (F € DFR) in A.
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The failure rate of D, (h) — sketch of Proposition’s proof

Let F € Dy(h), A € R and Q(-) the function defined by
Qx) =g (x)(1—x), 0 <x<1.

If
* h' is decreasing in A (h concave) and
* Q isincreasingin F(A) € (0,1)
then F has a decreasing failure rate (F € DFR) in A.

h'(x)

0 = S IE o)
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Aging Properties of D, (h) — Proposition 1b

let A € R.If

° h' and

* Q in F(A) € (0,1)

then F € D,(h) has a (F € DFR) in A.
Let A € R. If

* h' isincreasing in A (h convex) and
* Q is decreasingin F(A) € (0,1)
then F € Dg(h) has an increasing failure rate (F € IFR) in A.
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Aging Properties of D, (h) — Proposition 1c

Let A € R and assume that h' is constant in A (i.e. the parametric
part his linear in x in A).

* If Q increasingin F(A) € (0,1),then F € D,(h) is DFR in A.
* If Q decreasingin F(A) € (0,1),then F € D,(h) is IFR in A.

* If Q constant in F(A) € (0,1), then F € D,(h) has a constant
failure rate in A.

h'(x) constant

QF(®)  QF)

r(x) =
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Aging Properties of classical distributions exploiting Proposition 1c

For many classical distributions we have
h(x)=cx+d, ¢c>0.

Therefore, the study for the aging properties of the classical
distributions can be conferred from the monotonicity properties of
the function

Qx) =g (x)(1—x),0<x < 1.
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Aging Properties of classical distributions exploiting Proposition 1c

I

Logistic g ln( ~ ) rTH
1+e o 1—x o
_XTH X — U
H Gumbel exp(—e~ o ) —In(—Inx)
o
1 1 — T\ X —
H Cauchy  — 4 —arctan ( a ,u) tan (nx — —) .
2 T o 2 o

Q(x) = g'(x)(1 —x)
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Proposition 1c: Application for the Logistic Distribution

g(x) =1In (i), h(x; 0) = x?T”

QM) =g' ()1 -x) =
(x)——i<o — = Fis[FR in (—o0, o)

Qis decreasmg in F((—o0,)) = (0,1)

Let A € R and assume that h' is constant in A.

*|If Q increasing in F(A) € (0,1),then F € IFR in A.

*|If Q decreasingin F(A) € (0,1),then F € IFR in A.

*If Q constant in F(A) € (0,1), then F has a constant
failure rate in A.
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Probability Bounds for D, (h)

Proposition 3. If F € D;(h) and c is a positive lower bound for the
function g/, i.e.

g (x) = c, vxe (01)
then

h(x,; @) — h(xy; 0)

P(X1<X<XZ)S -

for every x{, x, with x; < x».
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Unimodality of D, (h)

Proposition 2. Let F € D,(h) and w(:) the function defined in
A € R by the formula

1 .... best and most appropriate
W (_X') — ; . properties that are of real
g (X) potential value in practical
|f applications

*w is concave in F(A)
* h' is logconcave in A
* both h and g are concave functions or both h and g are
convex functions in A and F(A) € (0, 1), respectively,
then F € D,(h) is unimodal and IFR in A.
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A gallery for h functions to generate distributions in D, (h)

> Linear C2. h: (—o0,00) — R isincreasing.
C3. h differentiable.
> Power * g

(leRorl =—o),

h(x) = ax?, a > 0and b > 1 odd
» Exponential
h(x) = ae® a,b > 0
» Exponential — Logarithmic
h(x) = ln(ln(a - becx)), b,c >0anda>1
» Power - Logarithmic
h(x)=aln(1+bx¢) a>0,b>0andc =1 odd
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Generation of new distributions in D, (h):linear combinations

Proposition 4. Let
Fl € Dg(hl); FZ € Dg(hz)

and introduce the function h5 defined by
hs = bihq + byh,,
with by, b, > 0.Then F3 = g~ o hz € D;(h3) if
> xl_i)rglJrg(x) =[leRand by + by, =1o0r

—00 Or

0.

> Jim, 502
> ]irng g(x)

X
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Generation of new distributions in D, (h): multiplication

Proposition 5. Let
Fl € Dg(hl); FZ = Dg(hz)

and introduce the function h; defined by
hs = hqh,.
Ifxl_i>1{)1+g(x) =[eR and [ =0o0rl=1,then
F3 =g~ "o hs € Dg(hs).
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Generation of new distributions in D, (h): composition

Proposition 6. Let
Fl € Dg(hl); FZ € Dg(hZ)

and introduce the function h; defined by
h3 — hl O hz.

If
Iim g(x) =l€e Rand hy(l) =1,
x— 0t

then
F3 = g~" o hg € Dy(h3).
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Generation of new distributions in D, (h):transforming the generator

Proposition 4.1. Let F € D} (h) and g, : (0, 1) — R a strictly increasing and differentiable function such that
lim,_o+go(x) =0 and lim,_,1-go(x) = 1.
Then, the function g = g o gq is a valid generator leading to the cdf

Fr=g"ohe Dy (h).
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Generation of new distributions in D, (h):transforming the generator

2o(x) 20" (x) Parameters Comments
| (=In(1 = x(1 — e~ 1))z —— a >0 Khalil et al. (2021)
E m.::;%:;m H;HT—:-lk r‘-f. > () | Allll}iid et al. 13{13:_‘] )
3 S = O<6a+#1 Mahdavi and Kundu (2017)
4 (1- Jm]:%] ']_] (1-e=)  6>0,a0>0 Barati and Rashidi (2022)
5 x“ Xw a >0 Special case of the Beta(a, 8) distribution with g = 1
6 | — (1 —x)° | — (1= x)7 p>0 Special case of the Beta(a, 8) distribution with @ = |
7 | — (1 — x2) (1—(1—x)p)a a.f>0 Kumaraswamy Distribution, see e.g. Jones (2009)
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Properties of the transformed family

Proposition 5.4. Let F' € D (h), go : (0,1) — R a transformation function and F* € D{Jf_(,”(/i') the
transformed D} — family. Let also s(x) denote the function

go(0)(1 — x) .
s(x) = = —(1 = x)(In(1 = go(x)))", 0 <x < 1.
[ —go(x)

a. If Fis IFR on A C (0, 00) and s(x) is decreasing on F(A) then F* is IFR on A.

b. If F is DFR on A C (0, 00) and s(x) is increasing on F(A), then F* is DFR on A.
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Properties of the transformed family

Proposition 5.8. Ler F' € D;(h). go : (0.1) — R a transformation function with

lim g((x) # 0

x—1-
and F* € D7, (h) the corresponding transformed D7 — family.

a. If F is heavy tailed, then F~ is heavy tailed.

b. If F is not heavy tailed, then F* is not heavy tailed.

International Conference on Combinatorial Methods

and Probability Models Generating families of continuous univariate distributions September 2024 29 /62



Further research

» Additional closure properties (when combining several
parametric parts)

» Study of fitting performance in
e experimental data (hydration heat, antibacterial activity)
* collections of big data (social networking data)
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A wide family of continuous univariate distributions and applications

Thank you for your attention!
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