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The Problem

Let S be a random variable with values in {0,1, . . . ,n}.
Assume that S has pmf yj = P(S = j).
Then,

y := (y1, . . . , yn)

belongs to the simplex

Sn := {(y1, . . . , yn) : y1 ≥ 0, . . . , yn ≥ 0, y1 + · · ·+ yn ≤ 1}.
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Definition: Proper pmf

Let S ∼ y. The pmf y is called proper if there exist 0− 1
independent indicators I1, . . . , In such that

P(I1 + · · ·+ In = j) = P(S = j) = yj , j = 1, . . . ,n.
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Lemma 1

The pmf y is proper if and only if the polynomial

G(u) :=
n∑

j=0

yj(1 + u)j

has only real roots.
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A randomized analogue

If y is chosen randomly in the simplex Sn, what is the
probability that y is proper?
Here, as usually, ”randomly” means that y has uniform
distribution on the simplex Sn.
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Solution

Since the area of Sn equals 1/n!, we wish to calculate the
probability

Pn :=
Area(Πn)

Area(Sn)
= n!Area(Πn)

where Πn is the subset of Sn that contains all the proper
pmfs.
On the other hand it is obvious to see that, when y is proper,

yj = yj(p1,p2, . . . ,pn), (j = 1, . . . ,n)

with the exact formula

yj(p1,p2, . . . ,pn)

= p1p2 · · · pn
∑

1≤i1<i2<···<ij≤n
(1−pi1

)(1−pi2
)···(1−pij

)

pi1
pi2
···pij

.
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Without loss of generality we shall assume that
0 < p1 < · · · < pn < 1 (recall
pj = P(Ij = 1) = 1− P(Ij = 0)), because the function
y = y(p) is a permutation invariant function on p’s.
Define
∆n := {p := (p1, . . . ,pn) : 0 ≤ p1 ≤ p2 ≤ · · · ≤ pn ≤ 1}.
Then,

y : ∆n → Πn

is a bijection.
In other words,

Πn = y(∆n).
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The co-area formula

Area(Πn) =

∫
Πn

dy =

∫
y(∆n)

dy.

The last integral equals (according to the co-area formula) to∫
∆n

| det J(p)|dp

where
J(p) =

∂y(p)

∂p

is the Jacobian matrix.
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After a lengthy calculation we found

det J(p) =
∏

1≤i<j≤n

(pi − pj)

(this is a Vandermonde type determinant!)
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Result 1

The probability Pn is given by

Pn = n!

∫
∆n

∏
1≤i<j≤n

(pj − pi)dp.

Equivalently, from symmetry reasons,

Pn =

∫
(0,1)n

∏
1≤i<j≤n

|xj − xi |dx.
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From this formula we can calculate (by hand!) P1 = 1,
P2 = 1/3, P3 = 1/30 and (perhaps...) P4 = 1/1050.
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Theorem 1

Pn =
1

Bn

where

Bn =

(
1
1

)(
3
2

)(
5
3

)
· · ·
(

2n − 1
n

)
.

The first 7 values of the sequence Bn are
1,3,30,1050,132300,61122600,104886381600.
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Selberg’s Integral

The proof is based on Selberg’s Integral,

I(α, β, γ) :=

∫
(0,1)n

n∏
i=1

xα−1
i (1− xi)

β−1
∏

1≤i<j≤n

|xj − xi |2γdx,

the value of which is

I(α, β, γ) =
n−1∏
j=0

Γ(α + jγ)Γ(β + jγ)Γ(1 + (j + 1)γ)

Γ(α + β + (n + j − 1)γ)Γ(1 + γ)
;

this formula holds provided
<(α) > 0,<(β) > 0,<(γ) > −min

{
1
n ,
<(α)
n−1 ,

<(β)
n−1

}
.



Sums of
Independent

Indicators

N. Papadatos

Introduction
The Problem

Solution

In our case we set α = β = 1, γ = 1/2, so that

Pn = I(1,1,1/2) =
2n

πn/2

n−1∏
j=0

Γ(1 + j/2)2Γ(1 + (j + 1)/2)

Γ(2 + (n + j − 1)/2)
.

A final induction argument give the formula Pn = 1/Bn with
Bn as in the Theorem.
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Thank you !!!
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