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Discrete time closed Homogeneous Markov system (HMS)

• S = {1,2,…,n}: State space of the HMS

• pij, i,j=1,2,...,n:  transition probability of moving from state i to state j

• t, t>0: time variable

• P=(pij) , i =1,2,...,n, j=1,2,…,n+1, the transition matrix 

• xi(t), i=1,2,...,n: probability of being in state i at time t

• x(t)=(x1(t), x2(t),…, xn(t))T : probability state vector of the HMS

• 𝑛𝑖 𝑡 , 𝑖 = 1,… , 𝑘 r.v. representing the number of members in state i at time t

• 𝑛𝑖𝑗 𝑡 , 𝑖, 𝑗 = 1,… , 𝑘 r.v. representing the number of members moving from 
state i to state j at time period [t,t+1)

• 𝒏 𝑡 = (𝑛1 𝑡 , 𝑛2 𝑡 , … . , 𝑛𝑘 𝑡 )𝑇 the state vector of the system





Τhe following recursive relations have been used to study the behaviour of the state vector. 

where,

Matrix Π with dimensions k(k+1) x k(k+1), is of the form

where P=(pij) is the kxk transition matrix. O is the k2 x k zero matrix. X is a k x k2 matrix with
elements of the form 𝛿𝑗𝑟𝑝𝑖𝑗 − 𝑝𝑖𝑗𝑝𝑖𝑟 ( i denotes the row and (j-1)k+r denotes the column of
each element) and Y is the Kronecker product of P and P (𝒀 = 𝑷⨂𝑷)

Expected values, variances, covariances of the state sizes of a 
discrete-time Homogeneous Markov System (HMS)



• t: t>0 time variable

• S={1,2,…,k}: State space of the HMS

• N: number of members in the system

• 𝑷 𝑡, 𝑡 + 𝛿𝑡 = (𝑝𝑖𝑗 t, t + δt ), i,j=1,2,…,k  is the transition probability matrix for  [t, t+δt)

• Q=(qij) i,j=1,2,…,k is the infinitesimal matrix of the transition rates 

• 𝑛𝑖𝑗(𝑡, 𝑡 + 𝛿𝑡), i,j=1,…,k is the number of members moving from state i to state j at time 
period [t, t+δt)

• ni(t), i=1,2,..,k is the number of members in state i at time t

• 𝒏 𝑡 = (𝑛1 𝑡 , 𝑛2 𝑡 , … , 𝑛𝑘 𝑡 ) 𝑇 is the system’s state vector at time t

Closed continuous- time homogeneous Markov 
System 



Continuous time Homogeneous Markov system (HMS)
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The transition probabilities for a time period [t,t+δt) satisfy the equation

where, δij i,j=1,2,..,k is Kronecker’s delta,  qij are the transition rates and o(δt) is a quantity for which 

lim
𝛿𝑡→0

(
𝑜(𝛿𝑡)

𝛿𝑡
) = 0

It can be proved that,

where we denote

By solving the differential equation we get,



Markov models with interactions in the movements 

In the case of the models with interactions (not studied here), we assume that if n(t) is the
system’s state vector at time t, then the elements of the transition matrix for the time period
[t,t+1) depend on the observed values of n(t). Hence, the transition matrix for the time period
[t,t+1) is denoted as P(n(t)). Therefore, the expected size of the system’s states at time t+1
given n(t), is given by the equation

Therefore,

Conlisk (1976) suggested a deterministic approach, resulting in the replacement of n(t) in
P(n(t)) with 𝐸[𝒏𝑇(t)], then



Lemma 1.1: Let X be a random variable which is the sum of k independent variables Xi ,
i=1,2,…,k that follow Binomial distribution with parameters ni and pi . For the probability
generating function Πχ(z) of the random variable X yields,

where the summation is stretched over all xi=0,1,..,r , i=1,2,…,k such that 𝑥1 +⋯+ 𝑥𝑘 = 𝑟
and

Factorial moments of the states’ sizes of a discrete 
time HMS



Proposition 1.1: For a closed HMS, with transition matrix P=(pij) 𝑖, 𝑗 ∈ 𝑆, rth-order moment E[nj
r t + 1 ] of the

random variable. 𝑛𝑗 t + 1 , 𝑗 = 1,2, … , 𝑘 are given by the recursive relation:

Proposition 1.2: For a closed HMS, with transition matrix P=(pij) 𝑖, 𝑗 ∈ 𝑆, the mixed moments of the random
variable 𝑛𝑖 t , 𝑖 = 1,2, … , 𝑘 are given by the recursive relation:

where, 
𝑟𝑖 ∈ ℕ, 𝑖 = 1,2,… , 𝑘.



We define a vector product (we use symbol x), that looks like the Kronecker’s product.

For example, if xT =(x1,x2) then,

and,

That is,



Theorem 1.1: For a closed, discrete time HMS with transition matrix P, it holds that

and

Corollary 1.1: If the transition matrix P of a closed, discrete time HMS is fully regular , then

where,                                                               and N is the size of the system.



Closed HMSs with periodic transition matrix

Let that the transition matrix P is periodic, with period d. Then, P can be written as,

(3.1)

where Ci ,i=0,1,..,d-1 are the cyclical subclasses and Pi ,i=0,1,…,d-1 block matrices with
dimension 𝑛𝐶𝑖𝑥 𝑛𝑐𝑖+1 , i = 0,1, … , d − 1, respectively, where 𝑛𝐶𝑖 is the number of states of
class 𝐶𝑖 (𝐶𝑑 ≡ 𝐶0)



We denote by 𝑛𝐶𝑖
𝑇 𝑡 , 𝑖 = 0,1,… , 𝑑 − 1 the vector that contains the sizes of the states that

belong to the cyclical subclass Ci.

Proposition 1.2: The rth-order factorial moments of the sizes of the states of a closed HMS
with periodic transition matrix P of the form (3.1) are given by the relation:

for 



By using Stirling numbers of the second kind, for 𝑟 ∈ ℕ, we have,

Therefore, the rth-order moments about 0 of the random variable 𝑛𝑗 𝑡 + 1 are given by the equation:

Moments about zero



Skewness and kurtosis 

It is known that,

Then,

and



Distribution of the states’ sizes

For a random variable Χ, with values x=0,1,…,N, we have that 

where 𝜇(𝑟) stands for the rth-order factorial moment of the random variable X.

Hence, for the closed homogeneous Markov system, the distribution of the states’ sizes
is given by the equation:



Corollary 1.2: The distribution of the states’ sizes 𝑛𝑖 𝑡 , 𝑖 = 1, … , 𝑘 for every  𝑡 ∈ ℕ+ of a 
closed homogeneous Markov system of size N, is given by the equation  

for 𝑖 = 1,… , 𝑘 and 𝑛 = 0,1,… , 𝑁.

Proposition 1.3: The distribution of a discrete variable X, 𝑋 = (𝑋1, 𝑋2, … , 𝑋𝑘) for which
𝑋1 + 𝑋2 +⋯+ 𝑋𝑘 = 𝑁, 𝑁 ∈ ℕ+, satisfies the equation,



Hence, for the closed homogeneous Markov system of discrete time, the distribution of the
random variable 𝑛 𝑡 = ( 𝑛1 𝑡 , 𝑛2 𝑡 , … , 𝑛𝑡 𝑡 )

𝑇 is given by the equation,

Corollary 1.3: The distribution of the state vector
𝑛 𝑡 = ( 𝑛1 𝑡 , 𝑛2 𝑡 , … , 𝑛𝑡 𝑡 )

𝑇 of a closed, homogeneous Markov system of discrete
time, for every moment t=1,2,… is given by the equation



Corollary 1.4: If the transition matrix P of a HMS of discrete time is fully regular, then the
asymptotic distribution of the states’ sizes 𝑛𝑖 𝑡 , 𝑖 = 1,… , 𝑘 is the Binomial with
parameters N and πi , that is

where, N is the system’s size and πi are the elements of the stochastic vector π for 
which 𝝅Τ𝑷 = 𝝅Τ.

Corollary 1.5: If the transition matrix P of a HMS of discrete time is fully regular, then the
asymptotic distribution of the states’ vector 𝐧 𝑡 is the Polynomial with parameters N
and 𝜋1, 𝜋2, … . , 𝜋𝑘, that is

where, N is the system’s size and πi are the elements of the stochastic vector π for
which 𝝅Τ𝑷 = 𝝅Τ.



Illustrative example

Let a closed discrete time HMS with 3 states and transition matrix

Let N=20 and 

Then:





Factorial moments of the states’ sizes of a continuous 
time HMS

Proposition 1.4: Let a continuous time HMS with transition rates matrix 𝑸 = 𝑞𝑖𝑗 , i, j = 1,… , k then the

rate of the rth-order factorial moment 𝐸[𝑛𝑗
𝑟

𝑡 ] of the random variable nj(t), j=1,2,…,k is given by the
relation,



Proposition 1.5: Let a continuous time HMS with transition rates matrix 𝑸 = 𝑞𝑖𝑗 , i, j = 1,… , k then the

rate of the mixed moments 𝐸[ς𝑖=1
𝑘 𝑛𝑖

𝑟𝑖 (𝑡)] of the random variable n(t), is given by the relation,

where, 𝑟𝑖 ∈ ℕ, 𝑖 = 1,2, … , 𝑘



Theorem 1.2: For a continuous time HMS with transition rate matrix Q, it holds that,

Corollary 1.6: Let 𝑸 ∈ 𝑀𝑛 and r ∈ ℕ, then,



Corollary 1.6: For a continuous time HMS, the factorial moments and the mixed factorial
moments of the states’ sizes at time t, are given by the relations,

or,



Corollary 1.7: If the transition matrix P(t) of a closed continuous time HMS is fully
regular then,

where, 𝒏𝑇 ∞ = lim
𝑡→∞

𝒏𝑇(𝑡), N is the system’s size and π is the stochastic vector for

which 𝝅Τ𝑸 = 𝟎𝑇 .

Remark 1.1: From the Corollary 4.2.2, we conclude that the asymptotic distribution of the
state vector of a continuous time HMS is Polynomial with parameters N and π1,π2,…,πk.

Remark 1.2: By means of the factorial moments, we can compute apart from the means,
variances and covariances of the states’ sizes, also kurtosis and skewness coefficients.



Distribution of the states’ sizes

Discrete time:

For the rth order factorial moments of the states’ sizes we have,



Corollary 1.8: Let Q be the transition rate matrix of a continuous time HMS, then the
asymptotic distribution of the states’ sizes ni(t) i=1,…,k is Binomial with parameters N and
πi, that is

where, N is the system’s size and πi are the elements of the stochastic vector π for which
𝝅Τ𝑸 = 𝟎Τ.



Illustrative example

Let a closed continuous time HMS with N=75 and  

and









The continuous time closed Homogeneous 

Markov system (HMS) as an elastic 

medium. The 3-d case.



Continuous time closed Homogeneous Markov system (HMS)

Key relations

Let
𝑝𝑖𝑗 𝑡, 𝑡 + Δt = 𝑞𝑖𝑗 + 0 Δt , for i ≠ 𝑗 1.1

Then 
𝑥𝑗 𝑡 + Δt = σ𝑖=1

𝑘 𝑥𝑖(𝑡)(𝛿𝑖𝑗 + 𝑞𝑖𝑗Δt) + 0 Δt , jϵ𝑆, 𝑡 ≥ 0

From which
ሶ𝒙′ 𝑡 = 𝒙′ 𝑡 𝑸 (1.2)

and
𝒙′ 𝑡 = 𝒙′(0)𝑒𝑸𝑡



Continuous time closed Homogeneous Markov system (HMS)

1. The consideration of the continuous medium

If we consider an HMS structure as a point of (), then we can consider the stochastic points of () as points
of a continuous medium, adopting that:

“the motion of a point at any instant moment is due to its interaction with its environment”

We note as:
𝐴𝑡 = 𝒙 𝑡 : 𝒙′ 𝑡 = 𝒙′ 0 𝑒𝑸𝑡 where 𝒙 0 is stohastic

and if An(t) stands for the area of (Π) that is defined by At, then:

𝒙′ 𝑡 = 𝒙′ 0 𝑒𝑸𝑡

An(0) An(t)

For n=3,

Let 
𝒕(𝒏) = lim

ΔS→0
(Δ𝐟 / ΔS) =

d𝐟

dS
and 𝒕(𝒏) = 𝑻 ∙ 𝒏



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time closed Homogeneous Markov system (HMS) as an elastic 

medium.

The motion is taking place on the hyperplane (): x1+x2+…+xn=1. If matrix Q is inseparable, then eq.
(1.2) has a stochastic stability point, π. We consider, at π, the rectangular coordinate system {f1, 
f2,…,fn}, where f1, f2 … fn-1, belong to () and fn ⊥().

Let,
F = [ f1, f2,…, fn ] = [F1 | fn ], where F1 = [f1 | f2 |…|fn-1 ].

We denote by z1,z2,…,zn the coordinates of a random point z() with respect to the rectangular
coordinate system {f1, f2,…,fn}. Eq. (1.2) is considered for points of (Π) with respect to the rectangular
coordinate system {f1, f2,…,fn} in the form of ሶ𝒛′ 𝑡 = ሶ𝒛′ 𝑡 ∙ 𝑮 or

ሶ𝒛′ 𝑡 = ሶ𝒛′ 𝑡 ∙ 𝑮 (2.1)

where,
𝒛 = (z1, zz2, … , zn−1)

′ and 𝐆 = 𝐅𝟏
′𝐐𝐅𝟏

Question
Can eq. (2.1) express the velocity field of a homogeneous, isotropic, linear elastic medium?



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time closed Homogeneous Markov system (HMS) as an elastic 

medium

Cauchy equation:
(z,t) a(z,t)= divT(z,t) (2.2)

where
• ρ(z,t): the density at point P at time t
• a(z,t): the acceleration at P at time t with respect to the coordinate system {f1,f2,…,fn-1}, 
• divT= (j=1,2,…,n-1 (Tijzj)),  i=1,2,…,n-1

Density (z,t):
Assuming that the HMS is isotropic, we have that (z,t)=ρ(t) and therefore it can be shown based on the 
continuity equation that:

(t)=e-ttrG ,  t0                                                                         (2.3)

Because trG=trQ<0, the field (1.2) is compressible.

Remark. The rate of change of the density constitutes a measure for the rate of convergence of the 
(probabilistic) system to the stability point.



Continuous time closed Homogeneous Markov system (HMS)  

2. The continuous time HMS of constant size as a linear elastic medium

Acceleration a(z,t):

We have,       a(z,t)=vt +vv

Then, 𝐚 t = 𝛻𝒗 ∙ 𝒗 = 𝑮′ ∙ ሶ𝒛 = 𝑮′ 𝟐 ∙ 𝒛

Therefore,
𝐚 𝒛, 𝑡 = 𝐚 = (𝑮2)′∙ 𝒛, for all t                                                        (2.4)

where z is the position vector.

The stress tensor:

Let,
T= trEI + 2E                                                                                        (2.5)

where,

• λ,μ: Lame constants
• E=(ij): (n-1)x(n-1) Euler’s strain tensor 



Continuous time closed Homogeneous Markov system (HMS)  

2. The continuous time HMS of constant size as a linear elastic medium

The elements of the Eulerian strain tensor are 

(2.6)

where, u=(ui) is the displacement vector



Continuous time closed Homogeneous Markov system 

(HMS)  
3. The 3-d HMS as a linear elastic medium

If n=3, then 

, (qij 0).

Let 

and 

,                                   ,

Then

4,7 4 0,7

4,02 4,22 0,2

0,2 2 2,2

− 
 

= −
 
 − 

Q

1

2 1 1

3 6 6

 
= − 
 

f 2 (0 )
1 1

2 2
−=f

3

1 1 1

3 3 3

 
= 
 

f

1 1

6,81 1.969

3,308 4,31

− = =  
− 

G F QF



Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-d HMS as a linear elastic medium

The  eigenvalues of Q are  λ1=-8.41 and λ2=-2.72. As a result, the velocity field ሶ𝐳′ = 𝐳′𝐆 indicates a 
compressible medium.

Equations of motion: 

Shift vector: u(z;t,t+t)= (u1(z; t,t+t), u2(z; t,t+t))΄ 
where,

From eq. (2.6) we get the strain tensor Ε=(εij),

8.4 2.72 8.4 2.72

1 10 20

8.4 2.72 8.4 2.72

2 10

( ) (0.72 0.28 ) ( 0.58 0.58 )

( ) ( 0.35 0.35 ) (0.28 0.72 )

t t t t

t t t t

z t e e z e e z

z t e e z e e

− − − −

− − − −

= + + − +

= − + + +

8.4 2.72 8.4 2.72

1 1 2

8.4 2.72 8.4 2.72

2 1 2

( ; , )) ( 1 0.72 0.28 ) ( 0.58 0.58 )

( ; , )) ( 0.35 0.35 ) (0.28 0.72 )

t t t t

t t t t

u t t t e e z e e z

u t t t e e z e e z

−  −  −  − 

−  −  −  − 

+  = − + + + − +

+  = − + + +

z

z

16.8 11.12 8.4 5.44 2.72

11

16.8 11.12 8.4 5.44 2.72

12 21

16.8 11.12 8.4

22

( ) 1.5 0.319 0.08 1.44 0.992 0.56

( ) ( ) 0.26 0.52 0.93 0.21 0.93

( ) 1.5 0.21 0.14 0.56 0.43

t t t t t

t t t t t

t t t

t e e e e e

t t e e e e e

t e e e e



 



− − − − −

− − − − −

− − − −

= − − − + − +

= = − − − +

= − − + + − 5.44 2.721.44t te−+



Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-dimensional HMS as a linear elastic medium

Based on eq. (2.5), the stress tensor T can be calculated

The velocity field:

1 1 2

2 1 2

52.89 36.79

21.89 25.09

z z z

z z z

= −

= − +



Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-d HMS as a linear elastic medium

Acceleration field:

By replacing a(z,t) and T(z,t) in Cauchy’s equation (2.2), we get the system of partial differential 
equations

1 1 2

2 1 2

52.89 36.79

21.89 25.09

z z z

z z z

= −

= − +

16.8 11.12 8.4 8.4 2.72

1 2

1

16.8 11.12 8.4 5.44 2.72

1

16.8 11.12 8.4

(52.889 36.787 ) ( 3 0.52 0.06 2 0.53 2 )

2( 1.5 0.32 0.08 1.44 0.1 0.56 )

2(0.26 0.52 0.93 0.2

t t t t t

t t t t t

t t t

z z e e e e e
z

e e e e e
z

e e e






− − − − −

− −  − − −

− − −


− = − − + + − + +




+ − − − + − + +



+ − − − 5.44 2.72

2

16.8 11.12 8.4 8.4 2.72

1 2

2

16.8 11.12 8.4 5.44 2.72

1

16.8

1 0.93 )

( 21.893 25.089 ) ( 3 0.52 0.06 2 0.53 2 )

2(0.258 0.52 0.93 0.206 0.93 )

2( 1.5 0.21

t t

t t t t t

t t t t t

t

e e
z

z z e e e e e
z

e e e e e
z

e








− −

− − − − −

− − − − −

−


+




− + = − − + + − +




+ − − − +



+ − − − 11.12 8.4 5.44 2.72

2

0.137 0.56 0.43 1.44 )t t t te e e e
z

− − − − 
+ − +





Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-d HMS as a linear elastic medium

Based on the continuity equation of the continuous medium we have,
(t)=e11.2t ,  t0

and by seeking a solution (λ,μ) of the form 

we finally get 

,                                              (3.1)

1 1 1 2 2 2 1 1 3 2 2 4( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( )z T t z T t K z T t K z T t =  +  = +

1 1
1 11 22 1 11 3

1 1

2
2 12 4

2

1
1 21 3

1

2 2
2 11 22 2 22 4

2 2

52.889 ( ) ( ( ) ( )) ( ) 2 ( ) ( )

36.787 ( ) 2 ( ) ( )

21.893 ( ) 2 ( ) ( )

25.089 ( ) ( ( ) ( )) ( ) 2 ( ) ( )

dZ dK
z t t t T t t T t

dz dz

dK
z t t T t

dz

dK
z t t T t

dz

dZ dK
z t t t T t t T t

dz dz

   

 

 

   

= + +

− =

− =

= + +



Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-d HMS as a linear elastic medium

The system of equations (3.1) are the constitutive equations of the HMS-homogeneous medium.  
By replacing εij and ρ(t) we derive Lame constants as 

λ(t)= λ(ρ(t), z, Ε(t)),     μ(t)=μ(ρ(t), z, Ε(t))

Figure 1. Lame constants for t=0.05



Continuous time closed Homogeneous Markov system 

(HMS)  

3. 3-d HMS as a linear elastic medium

Figure 2. Lame constants for t=0.2



Closed time-Homogeneous Markov system (HMS)  

3. 3-d HMS as a linear elastic medium

The energy of the HMS-homogeneous medium

The rate of change of the energy of the HMS-homogeneous medium is 

where, 
• U is the internal energy
• K is the kinetic energy

For the internal energy we have:

Remark. The rates of change of the internal and the kinetic energy constitute measures of the
variation of two important (energy-) components of the probabilistic system -which provide a
twofold characterization of the system-, i.e. one due to the compression of the system and the
other one is the translational. Apparently, they provide a two-dimensional characterization for the
rate of convergence of the system.

dE dU dK

dt dt dt
= +

( ) ( )
dU

t tr
dt

 = GT
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Then,

and

28 22.32 19.6 16.63 13.91 11.2

28 22.32 19.6 16.63 13.91 11.2
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t t t t t t

t t t t t t
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e e e e e e t

dt

e e e e e e t


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= − − + − +

+ − − + − +
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20
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( 3.5 1.52 2.32 )

t t t t t t

t t

d
e e e z e e e z z

dt
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
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Figure 3. Rate of Change of Energy
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