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Relative research topics

¢1. Study of the evolution of the state vector — asymptotic behaviour and rate of
convergence of open or closed HMS and NHMS with or without periodicity

¢2. Model control

3 Study of the evolution of the state vector — asymptotic behaviour of the
Semi-Markov systems (HSMS NHSMS)

4. HMS and HSMS as continuous media (fluids, elastic media) — stress tensor -
energy of the model

*5. Hidden HMS and HSMS
*6. Rewards of HMS and HSMS
7. Study of (stochastic) matrices involved

8. Applicationin many domains



Discrete time closed Homogeneous Markov system (HMS)

S={1,2,...,,n} State space of the HMS

* P 1,j=1,2,...,n: transition probability of moving from state i to state j
 t,t>0:time variable

. P=(pij) ,1=1,2,...,n,j=1,2,...,n+1, the transition matrix

* xi(t), 1=1,2,...,n: probability of being in state i at time t

o X(t)=(x4(t), Xo(t),-.., X,(t))" : probability state vector of the HMS

« n;(t),i =1,..,k rv.representing the number of members in state i at time t

. nl-j(t), ,,] =1,..,k rv. representing the number of members moving from
state i to state j at time period [t,t+1)

o n(t) = (ny(t),ny(t),....,n, (t))T the state vector of the system






Expected values, variances, covariances of the state sizes of a
discrete-time Homogeneous Markov System (HMS)

The following recursive relations have been used to study the behaviour of the state vector.
I [11T (it + 1".!] = F [11'Tlifffl] P,
pf(t+1) = p (1)1,
where,  u(t) = {E(ny(t)),....E{ng(t)), cov(ny(t), ny(t)),.... cov(ny(f), ng(t)),

cov(na(t), ni(t)). cov(na(t), na(t)), ..., cov(ng(t), ng(t)),

Matrix M with dimensions k(k+1) x k(k+1), is of the form [ v

PX]

where P=(p;) is the kxk transition matrix. O is the k?x k zero matrix. X is a k x k2 matrix with
elements of the form 6;,p;; — p;jpir (i denotes the row and (j-1)k+r denotes the column of
each element) and Y is the Kronecker product of Pand P (Y = PQP)



Closed continuous- time homogeneous Markov
System

t: t>0 time variable

S={1,2,...,k}: State space of the HMS

N: number of members in the system

P(t,t + 6t) = (p;j(t,t+ 81)),i,j=1,2,...,k is the transition probability matrix for [t, t+5t)
Q=(q;) i,j=1,2,...,k is the infinitesimal matrix of the transition rates

n;; (t,t + 8t), i,j=1,...,k is the number of members moving from state i to state j at time
period [t, t+0t)

n(t), i=1,2,..,k is the number of members in state i at time t

n(t) = (ny(t),n,(t), ..., n, () T is the system’s state vector at time t



Continuous time Homogeneous Markov system (HMS)
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The transition probabilities for a time period [t,t+0t) satisfy the equation
Dij I:.f‘f -4 rif'j = rﬁ,-j -+ fﬁjf‘;f -} U{rﬁf:}.
where, 9;i,j=1,2,..,k is Kronecker’s delta, g; are the transition rates and o(dt) is a quantity for which

. o(6t)y _
oo ) =0

It can be proved that,

d( En™(t)])

where we denote dt

= En"(1))Q.

d(En’(t)]) _  d(E[n(t)]) d(E[n(t)]) d(Eng(t)]),
a . at a7 &

i

By solving t

E [nT(f)] = nT{'ﬂ)pQ".



Markov models with interactions in the movements

In the case of the models with interactions (not studied here), we assume that if n(t) is the
system’s state vector at time t, then the elements of the transition matrix for the time period
[t,t+1) depend on the observed values of n(t). Hence, the transition matrix for the time period
[t,t+1) is denoted as P(n(t)). Therefore, the expected size of the system’s states at time t+1
given n(t), is given by the equation

Therefore,

En’(t + 1)/’ (t)] = 0’ (t)P(n(t)),
En’(t +1)] = E[n’ (t)P(n(t))].

Conlisk (1976) suggested a deterministic approach, resulting in the replacement of n(t) in
P(n(t)) with E[nT (t)], then

E[IIT It + 1]] i E[IIT |:_J?‘~_:|]PITE[11T |f'."i]]f|.



Factorial moments of the states’ sizes of a discrete
time HMS

Lemma 1.1: Let X be a random variable which is the sum of k independent variables X ,
i=1,2,...,k that follow Binomial distribution with parameters n, and p; . For the probability

generating function I, (z) of the random variable X yields,
k ke

d" Tlx(2) r! (1) .

AL~ (i) _xy i PR N 1% Rt

T_— E — _1||nj P Ill‘l_‘”"'-l_’”i"'l .
e I’y

r1+.. Fxp=r k i=1 i=1

where the summation is stretched over all x=0,1,..,r, i=1,2,...,k such that x; + ---+ x, =71
and

(xq) (0} 1

n. " =nin; —1)...(n; —x; +1), n.' =1, ytai=12,... k.



Proposition 1.1: For a closed HMS, with transition matrix P=(p;) i,j € S, r'"-order moment E[njr(t + 1)] of the
random variable. n; (t+1),j = 1,2, ..., k are given by the recursive relation:

1

I;I'I r. 2| I
E[ (t+1 r] Z rlzgl E[nl fl ?2 fﬂ rf;]; 1_;1’*’2; : g;;:;
ritoArg=r 4T

Proposition 1.2: For a closed HMS, with transition matrix P=(p;) {,j € S, the mixed moments of the random
variable n;(t),i = 1,2, ..., k are given by the recursive relation:

ry1+..+rr1=rq Tyt FERR=Tk

ko k
[H (= ”] [T11#5
=1

=1 i=1

.
E [H (re 'ir+1}}

i=1

where,
rnne€N,i=1.2,..,k.



We define a vector product (we use symbol x), that looks like the Kronecker’s product.

For example, if x™ =(x,,x,) then,

x! @ x! = (22, 2120, 211, 22),
and,
- (2) (1) (1) (1) (1) _(2)
x!' x xI = (", 2y ?{j ..-r.z’];rl Ty ),
That is,

x! x x!' = (x1(x) — 1), 2122, 221, 22 (25 — 1)).



Theorem 1.1: For a closed, discrete time HMS with transition matrix P, it holds that

E[nT(f +1) % ... xn (t+ 1}/] = E[uﬁr (t) % ... %xn’ ()P w...2P)
and
En'(t) < ...xn’(t)] = (0" (0) < ... x 0" (0))(P* & ... 2 PY).
r r r

Corollary 1.1: If the transition matrix P of a closed, discrete time HMS is fully regular, then

En"(x) x...xn' (o) = N7l o r’ @...0x!),

!

T
'

r

where, n’(~c) = lim,_ .. n?(#) and Nis the size of the system.



Closed HMSs with periodic transition matrix

Let that the transition matrix P is periodic, with period d. Then, P can be written as,

Co €7 Oy ... Ch,
'y 0 P, 0 ... 0
Y ( 0 0o Py ... 0 \
P=: (3.1)
'f_-l,.j_g (0 U U . P,.j_g
Cla_1 Kpd—L () 0 ... U )

where C, ,i=0,1,..,d-1 are the cyclical subclasses and P, ,i=0,1,...,d-1 block matrices with
dimension ne, X nciﬂ,i =0,1,...,d — 1, respectively, where N, is the number of states of
class C; (C4 = Cp)



We denote by ngi(t),i = 0,1, ...,d — 1 the vector that contains the sizes of the states that
belong to the cyclical subclass C;

Proposition 1.2: The r'"-order factorial moments of the sizes of the states of a closed HMS
with periodic transition matrix P of the form (3.1) are given by the relation:

E[u{{”{tﬂ ) X .. X ngw (t+1)] = E[n&l_l{'ff} X.. .\,11'?1?_1(1'}](]:’51_1 0. 8P 1),

for 11.19...., r=0.1...., d—1C_1 =Co_ykatP_y=Pgs)



Moments about zero

By using Stirling numbers of the second kind, for r € N, we have,

ny(t+1) = S(r.1)n;(t+1) 4+ S(r, Q':]r;'i,-?:'{f"f +1)4+...4+ S(r, rjlni;r;'(f +1)
— Z S(r. :"_Jnf]{f +1).
i=1

Therefore, the r'”-order moments about 0 of the random variable n;(t + 1) are given by the equation:

E[n f+11 ZHH‘.\E{H rr+1]



Skewness and kurtosis

It is known that,

Then,

and

\;(t+1)

kit +1)

Z( LY (5) (Y pets

E[n;(t +1) — Eni(t + 1)]°

o3

Seco(—1)(3) (BEny(t + 1)) End*(t 4+ 1)

2) 3/2
(E'i'::'.; (t+ 1)+ En;(t+1) — (En;(t+ 1)]9)

Eni(t+1) = En;(t+1)]" )

ad

S (1Y) (Eny(t + 1) Eni 5 (t + 1)

>
(E”j?)(f + 1)+ En(t+ 1) — (En;(t + 1'_))2)



Distribution of the states’ sizes

For a random variable X, with values x=0,1,...,N, we have that

N—k , s
(—1)

_ ]
J” [X = L] = F Z TH{_:‘:{H-

3=0

where p;) stands for the r'*-order factorial moment of the random variable X.

Hence, for the closed homogeneous Markov system, the distribution of the states’ sizes
is given by the equation:

1 (—1) (i)
Plni(t)=n]|=—= Z I' _,'I E [fa;n+J’|fff|]



Corollary 1.2: The distribution of the states’ sizesn;(t),i = 1, ...,k forevery t € N* of a
closed homogeneous Markov system of size N, is given by the equation

N-

-n , N k
n 1 (n+7)!
P [”é[“ - ;; —_ — E . 1 J ,E | | U:3| ] lp
. rq:...Tp.
J= J ri+. . Frp=n+j 1 k s=1 3=1

fori=1,..,kandn=20,1, ..., N.

Proposition 1.3: The distribution of a discrete variable X, X = (X4, X5, ..., X)) for which
X;+X,+--+ X, =N, N € N7, satisfies the equation,

k
!jl_,\]_ =1, .\2 = T9q.0.44 ‘S. k= -"j.-__l — FE | ‘ .\;‘“!
- Iy i



Hence, for the closed homogeneous Markov system of discrete time, the distribution of the
random variable n(t) = (n.(t), n,(t), .., n.(t))T is given by the equation,

- . 1 .
f;' [‘fl.lif} = j’vllf.'ziifjl = Po..... ”F.‘+l|l-.r_:| = ;‘k] = —E H”E e:'”\I

Corollary 1.3: The distribution of the state vector
n(t) = (ny(t), ny(t), ..., n(t))T of a closed, homogeneous Markov system of discrete
time, for every moment t=1,2,... is given by the equation

Plny(t) =ri,na(t) =ra, ... ngq(t) =7i] = L;,
Hj:] ris
k th! k 5k 2y .. k k N
11+ FTri=r1 et Free=re \j=l1 ST 1 1111



Corollary 1.4: If the transition matrix P of a HMS of discrete time is fully regular, then the
asymptotic distribution of the states’ sizes n;(t),i =1,..,k is the Binomial with
parameters N and 1, that is

ni (o)~ B(N,m),i=1,2,..., k.

where, N is the system’s size and T, are the elements of the stochastic vector mr for

which TP = T,

Corollary 1.5: If the transition matrix P of a HMS of discrete time is fully regular, then the
asymptotic distribution of the states’ vector n(t) is the Polynomial with parameters N
and 1, 5y, ...., Ty, thatis

ninc)~ M(N,m. Ty, T ).

where, N is the system’s size and 1, are the elements of the stochastic vector mr for

which TP = 7.



Illustrative example

Let a closed discrete time HMS with 3 states and transition matrix

0.4 0.3 0.3
P=102 06 0.2
05 0.3 0.2

Let N=20 and

Then:



t= =2 | t=. t=nx

Eny(t) 8.6 7.07 | 6.872 6.7533
Enal(t) 6.9 8.07 8.42 8.57 14
Ena(t) 4.5 4.86 | 4.707 4.6753
var (nq(t)) 4.68 | 4.5603 | 4.5097 4.4729
var (nolt)) 429 | 4.7931 | 4.8735 4.898
var (na(t)) 3.45 | 3.6768 | 3.5991 3.5824
cov (ny(1).n9(t)) | -2.76 |-2.8383 | -2.892 ~2.8942
cov (ny(1),na(t)) | -1.92 | -1.722 | -1.6177 -1.5787
cov (na(1), na(t)) | -1.53 |-1.9548 | -1.9814 -2.0037
M\ (1) 0.0522 | 0.1365 | 0.1472 0.1535

Ao (1) 0.1445 | 0.0876 | 0.0715 0.0646

Aa(t) 0.2903 | 0.2677 | 0.279 0.2813

Ky () -0.0917 | -0.0811 | -0.0783 -0.0764
Ko(t) -0.0676 | -0.0915 | -0.0948 -0.0958
Ka(t) -0.0149 | -0.0283 | -0.0222 -0.0209




Factorial moments of the states’ sizes of a continuous
time HMS

Proposition 1.4: Let a continuous time HMS with transition rates matrix Q = (qij),i,j =1, ...,k then the
rate of the rth-order factorial moment E[n]@ (t)] of the random variable ny(t), j=1,2,...,k is given by the

relation,

d(E [nf;":I (t)])
dt

.I;
— qﬂE[n}"-‘.{f}] L Z q.:-jE[n;r_l;'f_f]ufa:-{_'fj

=1

=1
t=]



Proposition 1.5: Let a continuous time HMS with transition rates matrix Q = (qij), i,j =1,...,kthenthe

rate of the mixed moments E[[%, n; ‘)(t)] of the random variable n(t), is given by the relation,

i Y _ ‘ () : -~
(]f —E H”‘; {f) ZIJ(IJJ-I-

ko k
Ve (72) 72 Aryt+l) (Fy—=1) ¢35 (%) /40
. ZZI qj\ [ ()n.z (t,l...nJ.J (¢)...n (2)...n, (f)].

s=1 J

1l ll

where,; €EN,i = 1,2,..., k



Theorem 1.2: For a continuous time HMS with transition rate matrix Q, it holds that,

i
dt

T

Corollary 1.6: Let Q € M,, andr € N, then,

expiIoIo. .. oQ+Iolw...cQul+...+Qxl
N — — \— p—

=explQ} @wexplQ} @ ... 0exp{Q},
e —————-., | ————

¥

En"(t)x...xn"(#)]| = En'(t)x...xn’ (H)])(I=I...2Q
\ - / \ ~ Y N e



Corollary 1.6: For a continuous time HMS, the factorial moments and the mixed factorial
moments of the states’ sizes at time t, are given by the relations,

EEIT{ﬁj < .o.oxn'(t) = (m'0)x...xn"(0)exp{(I=I...2Q
' o " - C Ne—  —
r T T
+ Iol... oQul+... +Qal.. .21t}
r r

or,

En"(t) x ... xn"(t)] = (n"(0) x ... x n"(0))(e¥ @ ... @ e¥).

” r r



Corollary 1.7: If the transition matrix P(t) of a closed continuous time HMS is fully
regular then,

EnT(cc) x ... x nT ()] = NO@T @77 @ ... @ «7),
_V— h . .

r r

where, n’ () = tlim n’(t), N is the system’s size and m is the stochastic vector for
— 00
which tTQ = 07.

Remark 1.1: From the Corollary 4.2.2, we conclude that the asymptotic distribution of the
state vector of a continuous time HMS is Polynomial with parameters N and m,,1,,...,T,.

Remark 1.2: By means of the factorial moments, we can compute apart from the means,
variances and covariances of the states’ sizes, also kurtosis and skewness coefficients.



Distribution of the states’ sizes

Discrete time:

k
TR T fpy ]' .?"- TR
P[ﬂ“t;=rl.ngm=r*g.....r's.;f+1|LtJ=-rk]= - E | |-r..r.'£ ‘JLf-J

Hi:l ri! i=1

For the rt" order factorial moments of the states’ sizes we have,

E™(t) x...xn"(t)] = (n"(0) x ... x n"(0)) (e @ ... 2 Y.

r r T



Corollary 1.8: Let Q be the transition rate matrix of a continuous time HMS, then the
asymptotic distribution of the states’ sizes n;(t) i=1,...,k is Binomial with parameters N and
T, that is

ni(oc) ~ B(N,m),i=1,2,.... k.

where, N is the system’s size and T, are the elements of the stochastic vector rr for which
Q=0T



Illustrative example

Let a closed continuous time HMS with N=75 and

Q=4 -5 1
2 2
and

n(0) = (20,25,30)".
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The continuous time closed Homogeneous
Markov system (HMS) as an elastic
medium. The 3-d case.



Continuous time closed Homogeneous Markov system (HMS)

Key relations

Let

Pij(t» t+ At) = ql] + O(At),fOI'i :/:j (11)
Then

xi(t+AY) = Y x;(0)(6; + qi;At) + 0(AY),  jeS,t =0
From which

x'(t) = x'(1)Q (1.2)
and

x'(t) = x'(0)e?



Continuous time closed Homogeneous Markov system (HMS)

1. The consideration of the continuous medium

If we consider an HMS structure as a point of (II), then we can consider the stochastic points of (II) as points
of a continuous medium, adopting that:

“the motion of a point at any instant moment is due to its interaction with its environment”

We note as:
A = {x(@®): x'(t) = x'(0)e?"  where x(0) is stohastic}

and if A (t) stands for the area of ([1) that is defined by A, then:

x'(t) = x'(0)e?

A.(0) » A1)
For n=3,
—q2 ~ s 91 q:s
Q= 4 Gy — s 4z
S 3 G5 — A3
Let

™ — _daf m_T.
t Alér_r)lo(Af/AS) S and t T -n



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time closed Homogeneous Markov system (HMS) as an elastic
medium.

The motion is taking place on the hyperplane (I1): x,+x,+...+x,=1. If matrix Q is inseparable, then eq.
(1.2) has a stochastic stability point, . We consider, at m, the rectangular coordinate system {f,,
f,,...f.}, where f, f,...f ,, belongto (I1) and f, L(I1).

Let,
F=[f,f,...f1=[F,|f, ], where F, =[f, |f,]...[f ]

We denote by z,,z,,...,z, the coordinates of a random point ze(II) with respect to the rectangular
coordinate system {f,, f,,...,f.}. Eq. (1.2) is considered for points of (1) with respect to the rectangular
coordinate system {f,, f.,....f }in the form of Z'(t) = z'(t) - G or

Z(t)y=2z'(t)-G (2.1)
where,
z = (21,243, --,Zn—1) and G = F;QF;
Question

Can eq. (2.1) express the velocity field of a homogeneous, isotropic, linear elastic medium?



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time closed Homogeneous Markov system (HMS) as an elastic
medium

Cauchy equation:
p(z,t) a(z,t)= divT(z,t) (2.2)
where
* p(z,t): the density at point P attime t
* a(z,t): the acceleration at P at time t with respect to the coordinate system {f,,f,,....,f .},
e divl= (Zj=1,2,...,n—1 (0T/0z)), i=1,2,...,n-1

Density p(z,t):
Assuming that the HMS is isotropic, we have that p(z,t)=p(t) and therefore it can be shown based on the
continuity equation that:

p(t)=etC >0 (2.3)
Because trG=trQ<0, the field (1.2) is compressible.

Remark. The rate of change of the density constitutes a measure for the rate of convergence of the
(probabilistic) system to the stability point.



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time HMS of constant size as a linear elastic medium

Acceleration a(z,t):

We have, a(z,¢t)=0v/ot +Vv-v
Then,a(t) =Vv-v=6"-2=(G)? -z

Therefore,
a(z,t) =a=(G%)"-z, forallt (2.4)

where z is the position vector.
The stress tensor:
Let,
T=A-trE-1 + 2uE (2.5)

where,

* AM: Lame constants
* E=(g;): (n-1)x(n-1) Euler’s strain tensor



Continuous time closed Homogeneous Markov system (HMS)

2. The continuous time HMS of constant size as a linear elastic medium
The elements of the Eulerian strain tensor are

) =) = |
0z; 0z; 0Oz; Oz (2.6)

where, u=(u;) is the displacement vector



Continuous time closed Homogeneous Markov system

(HMS)
3. The 3-d HMS as a linear elastic medium
If n=3, then
—G — 4y, da dy3
Q= ¢, —(5; — G 053
B -7 - , (02 0).
31 73 451 — 45

Let

47 4 07
Q=[402 -422 0.2
0,2 2 =22

and ,
f:(_ﬁ 1 1} foo = Ly f{l 1 1)'
S NN NN LS W
Then
G- FlrQ F o (—6,81 1.969)
3,308 —4,31



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

The eigenvalues of Q are A,=-8.41 and A,=-2.72. As aresult, the velocity field ' = z'G indicates a
compressible medium.

Equations of motion:
7,(t) = (0.72e°" +0.28¢ ")z, + (-0.58e " +0.58e ")z,
Z,(t) = (-0.35e %" +0.35e*"*")z,, + (0.28e°* +0.72e ™)

Shift vector: u(z;t,t+At)= (u,(z; t,t+At), u,(z; t,t+At))
where,

U, (Z;1,t + AD) = (=1 +0.726 2 4+ 0.28e 27z, + (~0.58e 4 +0.58¢ 27z,
u,(z;t,t + At)) = (-0.35e***" +0.35e >"**")z, + (0.28e *** +0.72e 27"z,

From eq. (2.6) we get the strain tensor E:(eij),

&,(t) =-1.5-0.319¢7** —0.08e " +1.44e** —0.992e>*" +0.56e "
&, (t) = &, (t) =0.26e %% —0.52¢ *** —0.93e ' —0.21e>**'+ 0.93e*™*
£, (t)=-15-0.21e7*% +0.14e "% + 0.56e °* —0.43e>** +1.44e>™



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-dimensional HMS as a linear elastic medium

Based on eq. (2.5), the stress tensor T can be calculated

The velocity field:
Z,=52.892, - 36.79z,
7, =-21.89z, + 25.09z,




Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

Acceleration field:

7, =52.89z, —36.792,
7, =-21.89z, +25.09z,

By replacing a(z,t) and T(z,t) in Cauchy’s equation (2.2), we get the system of partial differential
equations

oA

—+

(52.8892, —36.7872,) p = (—-3—0.526 % +0.06e 1 4 2684 _ 0,530 5% + 2e 27) >
Zl

+2(~1.5-0.32768 _0.08e 12 11 44684 — 0164 + 0.56e-2-72t)2—” +
Zl

+2(0.26e7°% —0.52¢ 1 —0.93¢% ~0.21e*" +0.93¢ ™) 2_“
ZZ
o

(-21.8937, +25.0892,)p = (-3-0.526 % +0.06¢ 1 +2¢° —0.53 "+ 2677)
Z2

+2(0.258e 1% —0.52¢ 2 —0,93¢** —0.206e > +0.93e72™) Z_ﬂ
Zl

+2(-1.5-0.21e7%" —0.137e71% 1.0.56e " —0.43e"* +1.44e2™*) 2_”
Z2



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

Based on the continuity equation of the continuous medium we have,
p(t)=e11.2t , 0

and by seeking a solution (A,p) of the form

A=Z,(2))T,(t) + Z,(2,)T,(t) , u=K(2)T;(t) + K, (2,)T, (1)
we finally get

52.8892,0(t) = (en(t)wzz(t» 1T<t>+2811(t) A0

l l

~36.7872,p(t) = 2512(t) Kot 0
dz

2

—21.893z,p(t) = 2521(t) 1T(t)

l

25.0892,p(t) = (811(t)+822(t)) 2T(t) 2 zz(t) 2T(t)

2 2



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

The system of equations (3.1) are the constitutive equations of the HMS-homogeneous medium.
By replacing ¢;; and p(t) we derive Lame constants as

MO=Mp(1), z, E(1),  u®=w(p(t), 2, E(V))

(@A

Figure 1. Lame constants for t=0.05



Continuous time closed Homogeneous Markov system

(HMS)

3. 3-d HMS as a linear elastic medium

(@A

2. Lame constants for t=0.2

Figure



Closed time-Homogeneous Markov system (HMS)

3. 3-d HMS as a linear elastic medium

The energy of the HMS-homogeneous medium

The rate of change of the energy of the HMS-homogeneous medium is

dE _ du N dK
dt dt dt

where,
* Uistheinternal energy
* Kisthe kinetic energy

For the internal energy we have:
PO =tr(GT)

Remark. The rates of change of the internal and the kinetic energy constitute measures of the
variation of two important (energy-) components of the probabilistic system -which provide a
twofold characterization of the system-, i.e. one due to the compression of the system and the
other one is the translational. Apparently, they provide a two-dimensional characterization for the
rate of convergence of the system.



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

Then,

O('j—LtJ = (5.68e % —0.617e 2% —22.24¢ %% + 5.868e 6% — 22 240 3" 1 33,366 ) A(t)
+(8.87562 —0.617e 2% —34.24¢7°% 1 2.87e 5% _10.24e 3" 1 33.366 %) u(t)

and
dK -16.8t -11.12t 5.4ty .2 -16.8t -11.2t —5.43t
- (536 —0.9e T ~0.6de ")z +(8.67e % ~1.15e " —2.24e )22,

+(-3.5e7*% +1.52e M —2.32e %) 22



Continuous time closed Homogeneous Markov system
(HMS)

3. 3-d HMS as a linear elastic medium

de/dt
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15000

12500
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