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On Measures of Information - An Application to Copulas

1. Measures of Information (m.o.i)

Many areas in science and engineering (information theory, comunication theory, signal processing,
probability, statistics, statistical learning, data science, etc.) have been greatly bene�ted from
m.o.i.

m:o:i !

8>><>>:
Entropy-type,
Fisher-type,
Divergence.

(cf. Ferentinos and Papaioannou, 1981)

Let a random quantityX and let for simplicity f (or f�) denotes the pd.f., F (or F�) the respective
c.d.f. and p = (p1; :::; pm) (or p(�)) the p.d. in the discrete case, � 2 � � Rd; d � 1.

The main representatives of each type of measures are:

representative !

8>>>>>>>>>>><>>>>>>>>>>>:

ESh(p) = �
mP
i=1

pi ln pi; ESh(f) = �
Z
R

f(x) ln f(x)dx; (Shannon 1948)

IFiX (�) =
Z
R

f�(x)
�
d
d� ln f�(x)

�2
dx, (Fisher, 1922)

D0(f; g) =
Z
R

f(x) ln
f(x)
g(x)

dx. (Kullback-Leibler, 1951, Kullback, 1959)
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On Measures of Information - An Application to Copulas

m.o.i obey a lot of properties, of axiomatic or operational type: For Instance,

� ESh(p) is maximized when p = (p1; :::; pm); pi = 1=m (discrete uniform - the most uncertain
distribution - all outcomes are equally likely to occur).

� If T = T (X) is a measurable transformation of the data X, then

IFiT (�) � I
Fi
X (�) with equality if-f T is su¢ cient.

� D0(f; g) � 0 with equality if-f f = g.

Interpretation (I) of m.o.i.:

I !

8>>>>>>>><>>>>>>>>:

Entropy-type! The amount of uncertainty/information about
the outcome of a random experiment

Fisher-type! The amount of information about the unknown parameter �
Divergence! The amount of information for discrimination between f and g,

or pseudo-distance between f and g.
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1.1 Extensions of Shannon Entropy

ER;a(f) =
1

1� a
ln
Z
R

fa(x)dx; a > 0; a 6= 1; (Rényi, 1961), lim
a!1

ER;a(f) = ESh(f):

ETs;a(f) =
1

a� 1

0B@1� Z
R

fa(x)dx

1CA ; a > 0; a 6= 1; (Tsallis, 1988), lim
a!1

ETs;a(f) = ESh(f):

I(f) =
Z
R

fa(x)dx; a > 0; information generating function, Golomb (1966).

J (f) = �1
2

Z
R

f2(x)d�, Extropy (Frank et al., 2015, Qiu,2017, Qiuand and Jia,2018).

E�(f) = �
Z
R

�(f(x))dx; for a convex function � (Burbea and Rao, 1982).

Eh�(f) = h

0B@Z
R

�(f(x))dx

1CA ; � concave, h di¤erentiable & increasing, (Salicru et al. 1993).
S(f) = �2(d=d�)ER;a(f)ja=1 = V ar[ln f(X)]; (Song, 2001, Zografos, 2008).
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1.2 Extensions of Kullback-Leibler divergence

D�2(f; g) =

Z
R

g(x)

�
1� f(x)

g(x)

�2
dx, (Kagan, 1963, Pearson�s, 1900 chi-square).

D�a(f; g) =

Z
R

g(x)

����1� f(x)

g(x)

����a dx, a � 1; (Vajda, 1973). For a = 1, total variation (Saks, 1937).
DM;a(f; g) =

Z
R

(fa(x)� ga(x))1=a dx; 0 < a < 1; (Matusita, 1964). For a = 1=2;

DH(f; g) = DM;1
2
(f; g) = 1

2

Z
R

�p
f(x)�

p
g(x)

�2
dx, Hellinger distance,

DM;1
2
(f; g) = 2� 2

Z
R

p
f(x)g(x)dx = 2� 2�1

2
(f; g);

�a(f; g) =

Z
R

fa(x)g1�a(x)dx; 0 < a < 1, a¢ nity of f , g,

DBa(f; g) = � ln
Z
R

p
f(x)g(x)dx; (Bhattacharyya, 1943).

DR;a(f; g) =
1

a� 1
ln

Z
R

fa(x)g1�a(x)dx; a > 0; a 6= 1; (Rényi, 1961), lim
a!1

DR;a(f; g) = D0(f; g):
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1.3 Csiszár�s phi-divergence
After Rényi�s divergence, the broad class of �-divergence between two densities f and g

introduced by Csiszár (1963, 1967) and independently by Ali and Silvey (1966), or Morimoto
(1963) according to Harremoës and Vajda (2011). This omnipresent measure is de�ned by

D�(f; g) =
Z
R

g(x)�

 
f(x)

g(x)

!
dx:

� : (0;1)! R is a real valued convex function (Csiszár, 1963, 1967 and Pardo, 2006) belonging
to the class of functions:

� =

(
� : � strictly convex at 1, with �(1) = 0; �0(1) = 0; 0�

�
0

0

�
= 0; 0�

�
u

0

�
= lim
v!1

�(v)

v

)
:

D�(f; g) has a wide range of applications because it�s ameasure of quasi-distance or a measure
of statistical distance between f and g since it�s non-negativity and satis�es the identity of
indiscernibles property (terminology by Weller-Fahy et al., 2015),

D�(f; g) � 0 with equality if and only if f(x) = g(x); a:e:

It�s not symmetric for � 2 �. It becomes symmetric for functions ��; ��(u) = �(u)+u�
�
1
u

�
,

� 2 � (Liese and Vajda, 1987, Vajda, 1995). It doesn�t obey the triangular inequality, in
general. A discussion is provided in Liese and Vajda (2008), Vajda (2009).
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1.3.1 Cressie and Read �-power divergence

It is de�ned (Cressie and Read, 1984, Liese and Vajda, 1987, Read and Cressie, 1988)

D�(f; g) =
1

�(�+ 1)

0B@Z
R

g(x)

 
f(x)

g(x)

!�+1
dx� 1

1CA ; �1 < � < +1; � 6= 0;�1;

and it is obtained from Csiszár�s �-divergence for

�(u) = ��(u) =
u�+1 � u� �(u� 1)

�(�+ 1)
; � 6= 0;�1; u > 0:

For � = 0 and � = �1 it is de�ned by

lim
�!0

D�(f; g) = D0(f; g) and lim
�!�1

D�(f; g) = D0(g; f)

It was de�ned to unify and study the existing chi-square multinomial goodness-of-�t tests ,
such as Pearson�s chi-square (� = 1), the log-likelihood ratio statistic (�! 0), modi�ed versions
of these two statistics and the Freeman and Tukey statistic (� = �1=2).

The authors suggest the use of � = 2=3 as an alternative to D0(f; g) and D1(f; g):
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1.4 Basu-Harris-Hjort-Jones, 1998, Biometrika - density power divergence (DPD)

da(f; g) =
Z
R

�
g(x)1+a �

�
1 +

1

a

�
g(x)af(x) +

1

a
f(x)1+a

�
dx; a > 0:

For all a � 0,

da(f; g) � 0, with equality, if and only if, f(x) = g(x); a:e:x:

For a = 0, it is de�ned by

lim
a!0

da(f; g) = D0(f; g):

For a = 1, it reduces to the L2 distance L2(f; g) =
R
R (f(x)� g(x))2 dx.

It is a special case of the so-called Bregman divergence (for T (u) = u1+a we get a times
da(f; g)), Z

R

h
T (f(x))� T (g(x))� ff(x)� g(x)gT 0(g(x))

i
dx:

The meaning of the tuning parameter a:

It controls the trade o¤ between robustness and asymptotic e¢ ciency of the parameter estimates
which are the minimizers of this family of divergences (cf. Basu et al., 2011, p. 297).
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1.5 Handling more than two distributions

Generalized f -divergences have been introduced under the name of f -dissimilarity by Gyor� and
Nemetz (1977, 1978),

Df(f1; :::; fk) =
Z
f(f1(x); :::; fk(x))dx;

where f is a real convex, continuous and homogeneous function.

Particular Cases: A¢ nity of Toussaint (1974), f(x1; :::; xk) = �
kQ
i=1

x
ai
i ; ai > 0,

kP
i=1

ai = 1;

�a(f1; :::; fk) = �
Z
f
a1
1 (x):::f

ak
k (x))dx:

A¢ nity of Matusita: For ai =
1
k, i = 1; :::; k:

f -dissimilarity leads to Csiszár�s �-divergence for k = 2 and f(x1; x2) = x2�
�
x1
x2

�
, x1; x2 > 0.

If f is strictly convex, then (cf. Gyor� and Nemetz, 1978)

Df(f1; :::; fk) � f(1; :::; 1) with equality if-f f1 = ::: = fk:
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1.6 Extensions of Fisher�s measure

IVX(�) =
Z
R

f�(x)

���� dd� ln f�(x)
����a dx, a � 1 (Vajda, 1973)

IMat
X (�) =

0B@Z
R

f�(x)

���� dd� ln f�(x)
����a dx

1CA
1=a

, a � 1 (Mathai, 1967)

IBoX (�) =

0B@Z
R

f�(x)

���� dd� ln f�(x)
����
s
s�1

dx

1CA
s�1

, s > 1 (Boekee, 1977)

They obey the maximal-invariance property : If T = T (X) is a measurable transformation of the
data X, then

IFiT (�) � I
Fi
X (�) with equality if-f T is su¢ cient.

Fisher information number: If � is a location parameter in the model f(x; �), x 2 R,
� 2 � � R; f(x; �) = h(x� �), then

J Fi(f) =
Z
R

h(x)
�
d

dx
lnh(x)

�2
dx = �

Z
R
h(x)

d2

dx2
lnh(x)dx:
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It is widely used in di¤erent areas, such as in statistics, in functional analysis, statistical physics,
in signal processing, etc. (cf. Mayer-Wolf, 1990, Carlen, 1991, Papaioannou and Ferentinos 2005,
Bobkov et al., 2014, Walker, 2016, Toranzo et al., 2018, Choi et al., 2021). The multivariate
version is analogous and it also received the attention of researches nowadays, cf. Yao, et al.
(2019) in dimension reduction and Zografos (1998, 2000) in formulating multivariate dependence.

Connection with Divergences: for a parametric family f(x; �), x 2 R, � 2 � � R;

lim
�!0

1

�2
D0(f(x; �); f(x; � + �)) = IFif (�); � 2 �;

lim
�!0

1

�2
D�(f(x; � + �); f(x; �)) =

�00(1)
2

IFif (�); � 2 �:

Fisher�s measure of information within a second-order approximation is the discrimination
information between two distributions that belong to the same parametric family.

Fisher information can be used to de�ne distance between densities in a parametric probability
space. It devised by the 25-year-old C. R. Rao in 1945, who was introduced di¤erential geometry
into statistical inference, opening up the burgeoning �eld now called information geometry.
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In Summary: m.o.i. are de�ned by means of density functions, they are omnipresent quanti-
ties, which play an important role, the last eight decades, in probability and statistics but also to
many other �elds of science and engineering.

Closing this review on entropy and divergences:

Interesting generalized and uni�ed classes of divergences have been proposed in the literature
by:

Tsairidis et al. (1996,..., 2000) in cencored data , Mattheou and Karagrigoriou (2009), Vonta
ang Karagrigoriou (2010) in reliability , Sachlas and Papaioannou (2010,..., 2014) in insurance ,
Stummer and Vajda (2012), Broniatowski and Stummer (2019, 2022), among many others.

The notion of divergence has been extended to a local setting and the respective local diver-
gences have been used to develop statistical inference and model selection techniques in a
local setting (cf. Avlogiaris, Micheas and Zografos (2016a,b, 2019)).

Measures of Entropy or slight modi�cations of them are considered and used as indices of:

Diveristy (C. R. Rao, 1982, 1986, Ricotta, 2006, Rajaram, 2017), Measures of the Shape
which are used in developing goodness-of-�t tests (Song, 2001, Zografos, 2008, Kontoyian-
nis and Verdu, 2013 and Arikan, 2016), Risk Measures (Pichler and Schlotter, 2020), ........
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2. Applications of the measures in Statistics

Applications of Shannon entropy or other entropy measures include, among many others,
encoding information sources, compressing data (e.g., for ZIP �les), encoding channels, quanti�-
cation of the ecological diversity of ecosystems, as well as error detection and correction.

Applications of Entropy in Probability and Statistics:

! Limit Theorems, such as Central Limit Theorem (CLT) by exploiting information theoretic
properties of Entropy/Fisher Information like entropy power inequality, etc.

cf. Oliner Johnson (2004). Information Theory and the CLT, ICP.

! Goodness-of-�t Tests,developed on the basis of Maximum Entropy Principle and spacings-
type non-parametric estimators of Shannon or other entropy.

cf. Vasicek, 1976, Dudewicz and an der Meulen, 1981, Jammalamadaka Rao et al. (1984,...,
2024), Arizono and Ohta, 1989, Ebrahimi et al, 1992, ...., Chaji and Zografos, 2019, Girardin
and Lequesne, 2019, Leonenko et al., 2021, .....
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Applications of Divergences in Estimation and Testing

Applications are based by considering divergences as Statistical Distances or pseudo-distances.

2.1 Minimum Kullback-Leibler Divergence (KLD) and ML Estimators

Minimum Distance Estimation has a long history: Wolfowitz (1953, 1957), Matusita (1953), ...,
Beran (1977),..., Lindsay (1994),..., Basu et al (1998, 2011), ...., Pyne et al. (2022), Ghosh

(2022), ....
Let X1; :::;Xn be i.i.d. replications of X which are described by the true but unknown
distribution g.

Suppose that ff� = f(�; �); � 2 � � Rp; p � 1g is a parametric identi�able family of candidate
distributions to describe the data.

The Maximum Likelihood Estimator (mle) ,

b�mlen = arg max
� 2�

8<:log
nY
i=1

f(xi; �)

9=; large n
' arg min

� 2�
D0(g; f�) = b�KLn :

Then, the MLE coinsides with Minimum KLD Estimator of �, obtained by minimizing KLD
between the true model g and the model which is adopted to describe the data, f(�; �).
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Minimum Density Power Divergence Estimators (MDPDE)
MLE are e¢ cient and consistent but they fail in robustness. This was motivated Basu, Har-
ris, Hjort and Jones, 1998, to introduce MDPDE, by minimizinng the Density Power Divergence

da(g; f�) =
Z
Rm

�
f(x; �)1+a �

�
1 +

1

a

�
g(x)f(x; �)a +

1

a
g(x)1+a

�
dx; a > 0:

The MDPDE of � is de�ned, b�an = arg min
� 2�

da(g; f�):

The tuning parameter a: controls the trade o¤ between robustness and asymptotic e¢ ciency
of the estimators which are the minimizers of this family of divergences.

When a! 0; lima!0 da(g; f�) = D0(g; f�). Then, for a! 0; b�an = b�KLn large n
' b�mlen .

Properties of MDPDE b�an:
� MDPDE b�an is a Consistent Estimator of �:
� MDPDE b�an is Asymptotically Normal.
� Robustness of b�an: observed in the in�uence function of the estimators. Through simula-
tions, MDPDE outperforms the MLE in the presence of outlying observations at higher values of a.
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2.2. Applications of Divergences in Testing Statistical Hypotheses

Let X1; :::;Xn be i.i.d. from the identi�able family ff� = f(�; �); � 2 � � Rp; p � 1g. Let,

H0 : � = �0 versus Ha : � 6= �0; for a speci�c �0 2 � � Rp:

The Procedure: Based on Wald�s � 1943 ideas, let an estimator of �, say b�an.
If H0 : � = �0 is true, then b�an is expected to be close of �0. Hence, a divergence between
fb�an = f(�; b�an) and f�0 = f(�; �0) will be small. This is in favour of H0.
Then, Large Values of a divergence (fb�an; f�0) supports rejection of H0.
A test statistic can be based on a divergence, say the Csiszár�s �-divergence D�(fb�an; f�0)
or da

�
fb�an; f�0

�
, between f(�; b�an) and the H0 model f(�; �0). This information theoretic

procedure provides an intuitive formulation and solution of the testing of hypotheses problem.
Under H0 : � = �0;

2n

�00(1)
D�

�
fb�a=0n

; f�0

�
L!

n!1 �2p or 2nda
�
fb�an; f�0

�
L!

n!1

rX
i=1

wi�
2
i;1;

wi eigenvalues of matrices depending on the score function u(�;x) = @
@� log f(x; �).

For a = 0, 2nda(fb�an; f�0) is asymptotically equivalent to the classical LR test statistic.
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2.3. Advanced Applications of Divergences in Estimation and Testing

(i) Robust DPD-based tests for composite hypotheses:

H0 : � 2 �0 = f� 2 � :m(�) = 0pg � �; against Ha : � =2 �0:

Ref: Basu, Chakraborty, Ghosh and Pardo, 2022, JMVA, 50th Anniversary Jubilee Edition.
(ii) Estimation and testing on independent, not identically distributed observations:
Ref: Castilla, Jaenada and Pardo, 2022, IEEE Trans. Inform. Theory.
(iii) On distance-type Gaussian estimation: , Zhang (2019, JMVA)
Ref: Castilla and Zografos, 2022, JMVA, 50th Anniversary Jubilee Edition.
Felipe, Jaenada, Miranda and Pardo, Mathematics, 2023.
(iv) MDPD Estimation, Testing and Model Selection in a Composite Likelihood Frame-
work:
Ref: A series of papers by: Castilla, Martin, Pardo and Zografos, 2018-2021.

(v) MDPD Estimation, Testing and Model Selection in a local setting by using local
divergences:
Ref: A series of papers by: Avlogiaris, Micheas and Zografos, 2018-2021.

(vi) Ordinal Response Models (Pyne et al., 2022), Finite Markov Chains (Ghosh, 2022), Interval-
monitored step-stress experiment (Balakrishanan et al., 2024), .....
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2.4. Measures of Dependence - Tests of Independence
Let r.v. X = (X1; X2; :::; Xn)

T ;with joint density f(x1; :::; xn) and marginals fXi(xi), i =

1; :::; n. Let, f0(x1; :::; xn) =
nQ
i=1

fXi(xi) the joint density under independence.

Mutual Information:

MI(X1; X2; :::; Xn) = D0(f; f0) =
Z
Rn

f(x1; :::; xn) log
f(x1; :::; xn)

fX1(x1) � � � fXn(xn)
dx1:::dxn:

(cf. Linfoot, 1957, Kullback, 1959,...., Joe, 1989, ..., Geenens and de Michaux, 2022, De Keyser
and Gijbels, 2023, ....). More generaly,

D�(f; f0) =
Z
Rn

f0(x1; :::; xn)�

 
f(x1; :::; xn)

f0(x1; :::; xn)

!
dx1:::dxn =

Z
Rn

f0(x)�

0BBB@ f(x)
nQ
i=1

fXi(xi))

1CCCA dx;
de�nes a distance-type measure between f and f0 and it serves as a broad measure of depen-
dence because it obeys Renyi�s (1959) type axioms , like the following (cf. Micheas and
Zografos, 2006, JMVA).

If ��(X1; X2; :::; Xn) = ��(X) = D�(f; f0)� �(1); then:
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(A1) ��(X) is de�ned for each X1; X2; :::; Xn; when Xi, i = 1; :::; n; is not a constant with
probability one.
(A2) ��(X) is symmetric in its argument:

(A3) �(1) � D�(f; f0) � �(0) + lim
u!+1

�(u)
u ; and hence

0 � ��(X) � 
 = �(0)� �(1) + lim
u!+1

�(u)

u
;

Notice that axiom (A3) is satis�ed by the measure D�(f; f0); if and only if �(1) = 0:
(A4) If the function � is strictly convex at 1 then ��(X) = 0 if and only if the random variables
X1; X2; :::; Xn are independent.
(A5) If the function � is strictly convex at 1 and 
 = �(0)� �(1) + lim

u!+1
�(u)
u < +1; then

��(X) = 
 if and only if the random variables X1; X2; :::; Xn are completely dependent.
(A6) ��(X) is invariant under one-to-one transformations T (X) of X, for any selection of '.
(A7) In the bivariate normal case with Pearson�s correlation coe¢ cient �, ��(X) is an increasing
function of j�j.
(A8) Let �(x) = x log x. Let also X = (X1;X2): Then, ��(X) � ��(X1) + ��(X2):

(Super-Additivity Property: cf. Carlen, 1991, Zolotarev, 1991, Micheas and Zografos, 2006,
Blumentritt and Schmid, 2012).
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Testing Independence:

Tind =
dMI(X1; X2; :::; Xn) =

Z
Rn

bf(x) log bf(x)bfX1(x1) � � � bfXn(xn)dx:
(cf. ..., Zeng, et al. 2018, Zhang, 2019, Geenens and de Michaux, 2022 and referenses therein)

Remark: (a) Mutual Information and Copula density

MI(X) = D0(f; f0) =
Z
Rn

f(x) log
f(x)

fX1(x1) � � � fXn(xn)
dx =

Z
[0;1]n

c(u) log c(u)du;

or

MI(X) = �ESh(c), c is the copula density of X:

(cf. Micheas, 1996-Thesis, Ma and Sun, 2008, 2011, Geenens and de Michaux, 2022-JASA)
(b) De Keyser and Gijbels, 2024, JMVA, propose copula-based dependence quanti�cation between

multiple groups of random variables of possibly di¤erent sizes via the family of �-divergence.

Another way to bridge Information Theory and Copula Theory:

!!!! Cumulative Entropy and Cumulative Divergence-type Measures

!! which may be initiated a new period in the development of statistical information theory.
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3.1 Cumulative/Survival-type Entropies and Divergences
Rao et al. (2004, IEEE Tran. Inf. Theory) introduced the cumulative residual entropy with a

functional similarity with Shannon�s (1948) entropy

0B@ESh(f) = �Z
R

f(x) ln f(x)dx

1CA, by

CRE(F ) = �
+1Z
0

F (x) lnF (x)dx; F (x) = 1� F (x):

Zografos and Nadarajah (2005, IEEE Tran. Inf. Theory) provided a timely elaboration of Rao et
al. (2004) measure, the survival exponential entropies, by

M�(F ) =
�Z +1
0

F
�
(x)dx

� 1
1��

; � > 0; � 6= 1; and lim
�!1

M�(F ) = exp

8>>><>>>:�
CRE(F )Z +1
0

F (x)dx

9>>>=>>>;
Di Crescenzo and Longobardi (2009, JSPI ), de�ne the cumulative entropy, like CRE, by

CE(F ) = �
+1Z
0

F (x) lnF (x)dx:
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Several other measures based on F or F have appeared (cf. Park et al. 2012, Sati and Gupta
2015, Asadi et al. 2017, Calì et al. 2017, Rajesh and Sunoj 2019, ...).

In complete analogy with Burbea and Rao (1982) �-entropy, E�(f) = �
Z
R

�(f(x))dx; � convex,

Chen et al. (2012), Klein et al. (2016) and Klein and Doll (2020) have uni�ed and extended the
CRE and the CE. Klein and Doll (2020), de�ne the cumulative �� entropy by,

CE��(F ) =

+1Z
�1

��(F (x))dx;

where �� is a general concave entropy generating function such that ��(u) = '(1 � u) or
��(u) = '(u) leads, respectively, to the cumulative residual ' entropy and the cumulative
' entropy.

The entropy generating function ' is a non-negative and concave real function de�ned on [0; 1].
CRE(F ) and CE(F ) are special cases of CE��(F ), for �

�(u) = '(1�u) or ��(u) = '(u),
with '(x) = �x lnx, x 2 (0; 1].
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3.1.1 Similarities-Di¤erences of Classical Entropies and Entropies based on Cdfs

Let ESh(fX) = �
R
fX(x) ln fX(x)dx classical Shannon entropy and the cumulative entropy

CE(FX) = �
R
FX(x) lnFX(x)dx: Then (cf. Di Crescenzo and Longobardi, 2009),

N CE(F ) � 0 which does not hold for ESh(f):

N Let Y = �X + �, � > 0, � � 0. Then,
ESh(fY ) = ESh(fX) + log�, and CE(FY ) = �CE(FX).

N If X and Y are independent, then ESh(fX;Y ) = ESh(fX) + ESh(fY ), while

CE(FX;Y ) =
�Z 1
0

FY (y)dy
�
CE(FX) +

�Z 1
0

FX(x)dx
�
CE(FY ):

3.1.2 Advantages of Entropies Based on Cdfs (cf. Klein et al, 2016)

N CE is based on probabilities and has a consistent de�nition for both discrete and continuous

random variables.
N CE is always non-negative.

N CE can easily be estimated by the empirical distribution function. This estimation is strongly
consistent, due to the strong consistency of the empirical distribution function.
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3.2 The Cumulative and the Cumulative Residual Kullback-Leibler information

They are direct extensions of the classic Kullback-Leibler divergence

0B@D0(f; g) = Z
R

f(x) ln
f(x)
g(x)

dx

1CA
while the integral of the right hand-side ensures the non-negativity.

CKL(F;G) =
Z
R

F (x) ln

 
F (x)

G(x)

!
dx+

Z
R

[G(x)� F (x)]dx;

CRKL(F ;G) =
Z
R

F (x) ln

 
F (x)

G(x)

!
dx+

Z
R

[G(x)� F (x)]dx;

(cf. Baratpour and Rad 2012, Park et al. 2012, Di Crescenzo and Longobardi 2015, Park et al.
2018, among others).

Based on lnx � x� 1, they are non-negative,

CKL(F;G) � 0; CRKL(F ;G) � 0 with equality if and only if F (x) = G(x), a:e: x.

This property supports the use of CKL(F;G) and CRKL(F ;G) as pseudo distances between
the underling distributions.
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3.3 Csiszár�s �-divergence type cumulative and survival measures

Starting from the necessity to be non-negative, it is de�ned (Zografos, 2023, PEIS) by

CD�(F;G) =
Z
R

G(x)�

 
F (x)

G(x)

!
dx�

�Z
R
G(x)dx

�
�

0BB@
Z
R
F (x)dxZ

R
G(x)dx

1CCA ;

SD�(F ;G) =
Z
R

G(x)�

 
F (x)

G(x)

!
dx�

0B@Z
R

G(x)dx

1CA�
0BB@
Z
R
F (x)dxZ

R
G(x)dx

1CCA ;
where � : (0;1)! R is a real valued convex function, � 2 � as in the case of classic Csiszár�s

�-divergence, D�(f; g) =
Z
R

g(x)�
�
f(x)
g(x)

�
dx.

They satisfy,

CD�(F;G) � 0 with equality if and only if F (x) = G(x); on R;
SD�(F ;G) � 0 with equality if and only if F (x) = G(x); on R:

Special choices of the convex function � lead to particular divergences, like Cressie and Read
cumulative/survival divergence.
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3.4 Density power divergence type cumulative and survival divergences

Cda(F;G) =
Z
R

�
G(x)1+a �

�
1 +

1

a

�
G(x)aF (x) +

1

a
F (x)1+a

�
dx; a > 0;

Sda(F ;G) =
Z
R

�
G(x)1+a �

�
1 +

1

a

�
G(x)aF (x) +

1

a
F (x)1+a

�
dx; a > 0:

Cda(F;G) and Sda(F ;G) are non-negative, for all a > 0 and they are equal to 0 if and only
if the underline cumulative distributions F and G, or the respective survival functions F and G
are coincide.

Moreover,

lim
a!0

Cda(F;G) = CKL(F;G);

lim
a!0

Sda(F ;G) = CRKL(F;G);

for the limiting measures CKL(F;G) and CRKL(F;G) the cumulative versions of Kullback-
Leibler divergence.

Remark: Cumulative and Survival Fisher�s type Measure: A series of papers by Balakrishnan
and Kharazmi, from 2021-2024, Zografos, 2023 and references therein.
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3.5 Concluding Remark on the two types of m.o.i.

Classical m.o.i. have a long history, of more than eight decades, and they have been studied, characterized
and successfully applied in a huge number of scienti�c �elds.

M.o.i. based on the cumulative distribution function or the survival function have a shorter live of two
decades. Their detailed study is in progress and their interpretation is not still so clear, in my view.

Both types of measures obey nice properties, and they guarantee their applications in probability,
statistics, reliability engineering and computer vision, among many others, however, they are characterized
by some di¤erences, too.

Which of the two types of measures should be prefered, in practice?

There is no clear answer to this question and as is it is usually the case in science, any scienti�c tool has
its own distinct place and its own distinct role. Thus, both approaches must co-exist, complement
each other and motivate each other.

Trying to characterize cumulative measures, this talk will conclude with a study/application of
cumulative measures to copula theory, where the cumulative distribution function dominates over
the density function.
Konstantinos Zografos, Univ. of Ioannina ICCMPM, A conference in Memory of Prof. Charalambos Charalambides, Oct. 5-6, 2024 Page: 28



On Measures of Information - An Application to Copulas

4. Information-theory & Copula-theory

Copula (Nelsen, 2006): A function C : [0; 1]2 ! [0; 1] such that,
(i) C(u; 0) = 0 = C(0; v); u; v 2 [0; 1];
(ii) C(u; 1) = u or C(1; v) = v; u; v 2 [0; 1];
(iii) If u1; v1 and u2; v2 2 [0; 1], with u1 � u2 and v1 � v2, then

C(u2; v2)� C(u2; v1)� C(u1; v2)+ C(u1; v1) � 0:

Sklar (1959): Copula links marginal distributions to form multivariate distributions.
If (X;Y ) is a r.v. with joint d.f. FX;Y and marginals FX and FY , then there is a copula function
C such that,

FX;Y (x; y) = C (FX(x); FY (y)) :

C is itself a bivariate distribution function with marginals U(0; 1):
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Let�s Concentrate on: The most representative Cumulative Entropy and Divergence

Cumulative Shannon-type Entropy: CE(F ) = �
+1Z
0

F (x) lnF (x)dx;

DP Divergence-type For a > 0;

Cumulative Divergence: Cda(F;G) =
Z
R

n
G(x)1+a �

�
1 + 1

a

�
G(x)aF (x) + 1

a F (x)
1+a

o
dx.

How these measures are translated in terms of copulas?

If C is a copula function, then the Shannon-type copula entropy is (cf. Zografos, 2024),

CESh(C) = �
1Z
0

1Z
0

C(u; v) lnC(u; v)dudv:

If C1 and C2 are copulas, then the density power type copula divergence between C1, C2 is,

Cda(C1; C2) =
1Z
0

1Z
0

�
C1+a2 (u; v)�

�
1 +

1

a

�
Ca2(u; v)C1(u; v) +

1

a
C1+a1 (u; v)

�
dudv; a > 0:

In the sequel, CESh(C) and Cda(C1; C2) are studied in the context of Extreme Value Copulas.
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Remark: (i) Cda(C1; C2) serves as a quasi-distance between the underlined copulas C1 and C2.
It can be used to introduce robust statistical procedures if one of them will be replaced by its
empirical counterpart.
(ii) If C2 is the independence copula, �(u; v) = uv, 0 < u; v � 1; (u; v) 6= (1; 1), the
empirical version of Cda(C;�) can be the basis of the test statistic for the delopment of a test
of independence.

Extreme Value Copulas (EVC)
A bivariate copula is an extreme value copula if and only if

CA(u; v) = exp

"
ln(uv) �A

(
ln v

ln(uv)

)#
; 0 < u; v � 1; (u; v) 6= (1; 1):

A : [0; 1]! [1=2; 1] is a convex function such that A(0) = A(1) = 1,
maxft; 1� tg (complete positive dependence-comonotonicity) � A(t) �1 (independence).

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

t

A(t)

Figure 1: Pickands dependence function A(t)
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Remark: EVC coincide with the set of copulas of extreme-value distributions, that is, the

class of limit distributions with nondegenerate margins of
�
Mn;1�bn;1

an;1
;
Mn;2�bn;2

an;2

�
with Mn;j =

max
i=1;:::;n

fXijg, for a sample of size n of 2-dimensional random vectors X(i) = (Xi1; Xi2); i =

1; :::; n, where bn;j 2 R are centering constants and an;j > 0 are scaling constants, j = 1; 2.

Proposition: (i) Shannon�s type extreme value copula entropy,

CESh(CA) = �
Z

[0;1]2

CA(u; v) lnCA(u; v)dudv = 2

1Z
0

A(t)

[1 +A(t)]3
dt:

(ii) Tsallis�type extreme value copula entropy,

CETs;�(CA) =
1

�� 1

Z
[0;1]2

h
CA(u; v)� C�A(u; v)

i
dudv; � > 0; � 6= 1;

where the information generating type function, is given by

CI�(CA) =
Z

[0;1]2

C�A(u; v)dudv =

1Z
0

1

[1 + �A(t)]2
dt; � > 0:
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Remark: (i) CESh(CA) and CETs;�(CA) can be thought as indices which are strongly related
to the dependence in the bivariate EV case. Moreover,

lim
�!1

CETs;�(CA) = CESh(CA):

(ii) For � = 1, the generating type function CI�(CA) is simpli�ed as follows,

CI1(CA) =
Z

[0;1]2

CA(u; v)dudv =

1Z
0

1

[1 +A(t)]2
dt:

It is connected with Spearman�s rho correlation coe¢ cient by

�S(A) = 12
Z

[0;1]2

CA(u; v)dudv � 3 = 12CI1(CA)� 3 = 12
1Z
0

1

[1 +A(t)]2
dt� 3:

(iii) CI�(CA) is a type of generating function because its derivative, in respect to �, at � = 1,
generates CESh(CA) in the sense that

(d=d�)CI�(CA)j�=1 = �CESh(CA)
(iv) It is also the basis for the de�nition of Rényi�s type extreme value copula entropy of the form

CER(CA) = (1� �)�1 log CI�(CA); � > 0; � 6= 1:
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Example (Asymmetric Tawn extreme value copula): Pickands dependence function:

ATawn(t) = (1� 1)(1�t)+(1� 2)t+
h
( 1(1� t))� + ( 2t)

�
i1=�

; 0 �  1;  2 � 1; � � 1:

If  1 =  2 = 	; with 0 � 	 � 1, ATawn(t) is related with Gumbel copula AG(t) =h
(1� t)� + t�

i1=�
; � � 1, by the formula,

ATawn(t) = 1 + 	
�
AG(t)� 1

�
;

The �gure includes the plots of ATawn(t) with � = 20,  2 = 1, for di¤erent values of  1:
 1 = 0:1 (black-solid),  1 = 0:2 (blue-dash),  1 = 0:5 (red-dots),  1 = 0:8 (brown-dash)
and  1 = 1 (green-solid), the last one is corresponding to symmetry ( 1 =  2 = 1, Gumbel
copula).
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Konstantinos Zografos, Univ. of Ioannina ICCMPM, A conference in Memory of Prof. Charalambos Charalambides, Oct. 5-6, 2024 Page: 34



On Measures of Information - An Application to Copulas

Next table evaluates Shannon type measure CESh(CA) with � = 20,  2 = 1, for di¤erent values
of  1.

CESh for � = 20,  2 = 1 and di¤erent  1
 1 0:001 0:1 0:2 0:5 0:8 1

CESh(CA) 0.25006 0.25566 0.26032 0.26997 0.27549 0.27777

Observe that CESh(CA) increases as the value of  1 increases and ATawn(t) is moving from the
case of independence to the case of complete positive dependence in the sense of comonotonic-
ity (one variable is essentially, almost surely, an increasing function of the other (Nelsen, 2006,
p. 32) and symmetry.
Similar is the behavior of CESh(CA) when � = 20 and the role of  1 and  2 is reversed (cf.
Zografos, 2024 where an additional example for Marshall-Olkin EVC is given).

4.1 Properties of the measures in EVC

Proposition 1 The measures CESh(CA), CI�(CA) and CI1(CA) are maximized for A(t) =
maxft, 1� tg and they are minimized for A(t) = 1, for t 2 [0; 1], while their range of values is
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as follows,

0:25 � CESh(CA) � 0:277778;
1

(1 + �)2
� CI�(CA) �

2

(1 + �)(2 + �)
; � > 0;

1

4
� CI1(CA) �

1

3
:

Properties of extreme value copula entropies
Properties based on Scarsini�s (1984) axioms for a measure of concordance.

Start, with monotonicity of the measures with respect to the concordance ordering of copulas.
(informally, "large" values of one variable tend to be associated with "large" values of the other).

Let CA1 and CA2 are EVC, then CA1 � CA2 if CA1(u; v) � CA2(u; v), 0 < u; v � 1;

(u; v) 6= (1; 1).

Proposition 2 If CA1 and CA2 are EVC with CA1 � CA2; then, the measures preserve the
concordance ordering,

CESh(CA1) � CESh(CA2) and CI�(CA1) � CI�(CA2), � > 0; � 6= 1:
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Continuity of the measures with respect to pointwise convergence: Let (Xn; Yn); n = 1; 2; :::

be a sequence of continuous random variables with EVC CAn which converges pointwise to an
extreme value copula CA. In this setting,

CAn(u; v) = exp

"
ln(uv) �An

(
ln v

ln(uv)

)#
; 0 < u; v � 1; (u; v) 6= (1; 1);

and

CA(u; v) = exp

"
ln(uv) �A

(
ln v

ln(uv)

)#
; 0 < u; v � 1; (u; v) 6= (1; 1);

for Pickands dependence functions An and A. Then, Shannon and Tsallis�measures are
continuous with respect to pointwise convergence of copulas.

Proposition 3 If (Xn; Yn); n = 1; 2; ::: is a sequence of continuous random variables with EVC
CAn which converges pointwise to an EVC CA; then

lim
n!1 CESh(CAn) = CESh(CA);
lim
n!1 CI�(CAn) = CI�(CA); � � 1;

lim
n!1 CETs;�(CAn) = CETs;�(CA); � � 1:
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Similar continuity property is obeyed by Spearman�s rho (cf. Nelsen, 2006, p. 169) which is
directly connected with CI�(CAn) and CI�(CA), for � = 1.

Invariance of copulas, under strictly increasing transformations of the corresponding continuous
random variables:

Proposition 4 Let X and Y are continuous random variables with copula CXY and �(X) and
�(Y ) are almost surely strictly monotone functions on range of X and Y respectively, then,

CESh
�
C
�;�
A

�
= CESh(CA); CETs;�

�
C
�;�
A

�
= CETs;�(CA); CI�

�
C
�;�
A

�
= CI�(CA);

where the superscript �; � in the notation of C�;�A in the measures is used to denote the respective
measure based on the EVC of �(X) and �(Y ).

Remark: (i) The above properties support the conclusion that the measures introduced here
are more related to concordance measures (like Spearman�s rho) than to extent of infor-
mation they contain.
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(ii) EVC are positively quadrant dependent (PQD) and the measures studied here are monotone
with respect to the concordance ordering of the respective EVC. So, small values of these mea-
sures correspond to less concordant or less PQD EVC.

(iii) CESh(CA) is maximized for A(t) = maxft; 1� tg and the maximum value of CESh is

2

1Z
0

maxft; 1� tg
[1 + maxft; 1� tg]3

dt = 0:277778:

That is, CESh(CA) is maximized in the case of complete positive dependence, in the sense of
comonotonicity.

4.2 Divergences in the EVC setting

Let Ai; i = 1; 2, be two Pickands dependence functions with associated bivariate extreme value
copulas

CAi(u; v) = exp

"
ln(uv) �Ai

(
ln v

ln(uv)

)#
; 0 < u; v � 1; (u; v) 6= (1; 1); i = 1; 2:
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Proposition 5 (a) Csiszar�s type �-divergence between EVC CA1 and CA2;

CD�(CA1; CA2) =
Z

[0;1]2

�
ln
1

v

�
v
1�t+A2(t)

t
1

t2
�

 
v
A1(t)�A2(t)

t

!
dvdt

��S(A2) + 3
12

�

 
�S(A1) + 3

�S(A2) + 3

!
:

(b) The Kullback-Leibler type extreme value copulas divergence is given by,

CDKL(CA1; CA2) = 2
1Z
0

A2(t)�A1(t)

[1 +A1(t)]
3 dt�

�S(A1) + 3

12
ln

 
�S(A1) + 3

�S(A2) + 3

!
:

(c) For � 2 R; � 6= 0;�1, the Cressie-Read �-power type extreme value copulas divergence is
given by

CD�(CA1; CA2) =
1

�(�+ 1)

0B@ 1Z
0

1

[1 +A1(t) + � (A1(t)�A2(t))]
2dt

��S(A2) + 3
12

 
�S(A1) + 3

�S(A2) + 3

!�+11A :
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(d) For a > 0; the density power type extreme value copulas divergence is given by,

Cda(CA1; CA2) =

1Z
0

1

[1 + (1 + a)A2(t)]
2dt+

1

a

1Z
0

1

[1 + (1 + a)A1(t)]
2dt

�
�
1 +

1

a

� 1Z
0

1

[1 +A1(t) + aA2(t)]
2dt:

(e) The CKL(CA1; CA2) extreme value copulas divergence is given by,

CKL(CA1; CA2) = lim
a!0

Cda(CA1; CA2) = 2
1Z
0

A2(t)�A1(t)

[1 +A1(t)]
3 dt+

1

12
(�S(A2)� �S(A1)) :

Remark: (i) All the above measures are non-negative and they attain their minimum value if
and only if the underline copulas are coincide. Hence, all these divergence type measures can by
considered as quasi-distances or statistical distances between the underlined copulas.
(ii) The value A(t) = 1 corresponds to independence. Then, anyone of these measures for
A2(t) = 1, lead to a measure of the distance from independence. Hence, their empirical versions
can be applied to develop broad classes of tests of independence.
Konstantinos Zografos, Univ. of Ioannina ICCMPM, A conference in Memory of Prof. Charalambos Charalambides, Oct. 5-6, 2024 Page: 41



On Measures of Information - An Application to Copulas

(iii) Cases (b) and (e) of the proposition concentrate to two di¤erent forms of Kullback-Leibler�s
type EVC divergences CDKL(CA1; CA2) and CKL(CA1; CA2). The �rst is a special case of
Csiszar�s type measure and the second a special case of the density power measure (cf. Zografos,
2023 for details)

Example (Gumbel extreme value copula):
Let Gumbel copula with A1(t) = [t� + (1 � t)�]1=�; � � 1 and the independence copula
�(u; v) = uv with A2(t) = 1. Then, Kullback-Leibler type measure between Gumbel and
Independence copula is:

CDKL(CA1;�) = 2

1Z
0

1�A1(t)

[1 +A1(t)]
3dt�

�S(A1) + 3

12
ln

 
�S(A1) + 3

�S(A2) + 3

!

= 2

1Z
0

1� [t� + (1� t)�]1=�h
1 + [t� + (1� t)�]1=�

i3dt� �S(A1) + 3

12
ln

 
�S(A1) + 3

3

!
;

�S(A1) = 12
Z

[0;1]2

CA1(u; v)dudv � 3 = 12
1Z
0

1

[1 +A1(t)]
2dt� 3 and �S(A2) = 0:
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Table gives values of CDKL for values of the dependence parameter �. Observe that the minimum
value of CDKL, equal to 0, is attained in the case of independence, � = 1, which is expected.

CDKL for values of �
� = 1 � = 1:5 � = 2 � = 3 � = 8 � = 15 � = 50

CDKL(CA1;�) 0 0.0025 0.0056 0.0095 0.0141 0.0149 0.0152

5. Epilogue-Conclusions

� Review of classic measures of information (m.o.i): Entropy - Divergence - Fisher-type.

� Properties of the measures - applications.

� Recent reconsiderations of the classical measures, based on the d.f.

� Cumulative entropy and divergence provide a link with copula theory.

� The reconsiderd measures was studies in the frame of EVC.
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Open Problems - Future work

Let i.i.d. observations x1; :::;xn of a random vector X. The dependence of the components
of X is formulated from a true but unknown copula C with respective copula density c and
let fC�(�) = C�(�; �); � 2 � � Rp; p � 1g is a parametric identi�able family of candidate
copulas to describe the observations x1; :::;xn and fc�(�) = c�(�; �); � 2 � � Rp; p � 1g the
respective family of copula densities.

(I) Following the previous presentation on EVC, it is open:
N The application of Cumulative-type m.o.i. inside broad families of copulas (elliptical copulas,
Archimedean copulas, etc.) and the Characterization, the Interpretation of the Cumulative-type
m.o.i. for these families of copulas.

(II) There is a direct relationship between m.o.i. (classical or cumulative) and a copula density
c�(�) = c�(�; �); � 2 �; or a copula function C�(�) = C�(�; �); � 2 �, respectively, Then:
N Information theoretic methods of estimation and testing can be developed directly to the
family c�(�), by using classical m.o.i, or to the family C�(�), by using cumulative m.o.i.
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